The macroeconomic and distributional effects of progressive wealth taxes

Barış Kaymak Markus Poschke

Université de Montréal and CIREQ

McGill University and CIREQ

CEE Boğaziçi, May 2016

Kaymak - Poschke (2015)

Wealth inequality

Capital is back!

Private Wealth-National Income Ratios, 1970-2010

Source : Piketty and Zucman, 2014 (QJE)

Kaymak - Poschke (2015)

Wealth inequality

3

イロト イロト イヨト イヨト

Distribution of Wealth in US

This figure depicts the share of total household wealth held by the 0.1% richest families, as estimated by capitalizing income tax returns. In 2012, the top 0.1% includes about 160,000 families with net wealth above \$20.6 million. Source: Appendix Table B1.

Source : Saez and Zucman, 2015 (QJE)

Kaymak - Poschke (2015)

イロト イポト イヨト 「ヨ

Piketty's Hypothesis

– Capitalist system is doomed !

- K/Y ratio will rise indefinitely.
- Wealth will become increasingly concentrated.

- Solution : A global wealth tax on the super wealthy.

◆□▶ ◆□▶ ◆三▶ ◆□▶ ▲□

Piketty's Hypothesis

- Capitalist system is doomed !
 - K/Y ratio will rise indefinitely.
 - Wealth will become increasingly concentrated.
- Solution : A global wealth tax on the super wealthy.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ●

Piketty's Wealth Tax Proposal

E Net Worth	Basic Proposa (euros)	1	
From	То	Tax Rate	Percentile [*]
0 1,000,000 5,000,000	1,000,000 5,000,000 and over	0 1% 2%	% 4.0 - 0.4 <0.4

Broad Proposal
Net Worth (euros)

0 200,000 0 200,000 1,000,000 0.5% 46.0 - 4.0%	From	То	Tax Rate	Percentile
5,000,000 and over 2% <0.4	0 200,000 1,000,000 5,000,000	200,000 1,000,000 5,000,000 and over	0 0.5% 1% 2%	46.0 - 4.0% 4.0 - 0.4% <0.4

assuming a pareto distribution with a tail index of 1.4.

Kaymak - Poschke (2015)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ●

Pros and Cons of Wealth Taxation

Proponents

- Social equity and peace
- Efficient allocation of capital (Guvenen 2015)

Opponents

- Lower output and growth
- Tax avoidance and capital flight
- Administrative burden
- Liquidity issues

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

This paper

What are the macroeconomic and distributional implications of Piketty's wealth tax proposal?

Preliminary Finding : Even in the absence of practical challenges, a progressive wealth tax may fail to achieve its equity objectives.

Kaymak - Poschke (2015)

Wealth inequality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This paper

What are the macroeconomic and distributional implications of Piketty's wealth tax proposal?

Preliminary Finding : Even in the absence of practical challenges, a progressive wealth tax may fail to achieve its equity objectives.

Kaymak - Poschke (2015)

Wealth inequality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへの

Methodological Approach

- Build a quantitative model of an economy with realistic earnings and wealth inequality
- Calibrate the model economy to the U.S. economy in 2010
- Simulate the effects of Piketty's wealth tax proposal
- Form predictions of short-run and long-run distributions of welfare

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Aiyagari-Bewley-Huggett à la Castañeda et al., JPE 2003

- Life-Cycle and Intergenerational Income Risk
- Retirement
- Superstars
- \Rightarrow Matches income and wealth inequality well

Institutions :

- Social security
- Corporate, Estate, Income and Sales Taxation
- Exogenous government expenditures

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Household's Problem

$$V(k, z, \mathcal{R}) = \max_{c, x \ge 0, \ h \in [0, 1]} \left\{ \frac{c^{1 - \sigma}}{1 - \sigma} - \theta \frac{h^{1 + \epsilon}}{1 + \epsilon} + \beta \mathbb{E}[V(k', z', \mathcal{R}') | z] \right\}$$

subject to

$$c(1 + \tau_s) + x = y^d(wzh, rk, \omega(z, \mathcal{R})) + k - \tau_P(k),$$

$$k' = x - E(x, \mathcal{R}, \mathcal{R}')$$

$$x \ge 0$$

Kaymak - Poschke (2015)

Wealth inequality

Income Tax System and Disposable Income

- Taxation of Corporate Income :

 $\tau_c \max(rk - d_c, 0)$

- Adjusted Gross Income :

$$y_{agi} = wzh + \min(rk, d_c) + \omega(z, \mathcal{R})$$

- Taxation of Personal Income :

$$(y_{agi} - \lambda [\min(y_{agi}, y_b)]^{1- au_l} - (1 - au_{\max}) \max(y_{agi} - y_b, 0)$$

- $0 \le \tau_l \le 1$ measures the degree of progressivity.
- Permits net transfers (e.g. EITC).
- τ_{\max} is the top MTR, applicable for $y > y_b$.
- Taxation of Estates : E(x) piecewise linear as in the law.

Kaymak - Poschke (2015)

・ロト ・四ト ・ヨト ・ヨト … ヨ

Demographics and Labor Productivity

$$\Pi = \begin{bmatrix} z_W & z_R \\ \hline z_W & \Pi_{WW} & \Pi_{WR} \\ z_R & \Pi_{RW} & \Pi_{RR} \end{bmatrix}$$

◆□ → <□ → < Ξ → < Ξ → Ξ の Q (?)</p>

Demographics and Labor Productivity

$$\Pi = \begin{bmatrix} z_W & z_R \\ \hline z_W & \Pi_{WW} & \Pi_{WR} \\ z_R & \Pi_{RW} & \Pi_{RR} \end{bmatrix}$$

$$\Pi_{WW} = \begin{pmatrix} f_L + a_L & f_L + a_H & f_H + a_L & f_H + a_H & z_{awel} & z_{aweh} \\ \hline f_L + a_L & A_{11} & A_{12} & 0 & 0 & \lambda_{in} & 0 \\ f_L + a_H & A_{21} & A_{22} & 0 & 0 & \lambda_{in} & 0 \\ f_H + a_L & 0 & 0 & A_{11} & A_{12} & \lambda_{in} & 0 \\ f_H + a_H & 0 & 0 & A_{21} & A_{22} & \lambda_{in} & 0 \\ z_{awe_l} & \lambda_{out} & \lambda_{out} & \lambda_{out} & \lambda_{out} & \lambda_{ll} & \lambda_{lh} \\ z_{awe_h} & 0 & 0 & 0 & 0 & \lambda_{hl} & \lambda_{hh} \end{pmatrix}$$

▶ other ∏'s

(□) (□) (□) (Ξ) (Ξ) (Ξ) Ξ

Income Process : Intergenerational

$$\Pi = \begin{bmatrix} z_W & z_R \\ z_W & \Pi_{WW} & \Pi_{WR} \\ z_R & \Pi_{RW} & \Pi_{RR} \end{bmatrix}$$

$$\Pi_{RW} = \begin{pmatrix} f_L + a_L & f_L + a_H & f_H + a_L & f_H + a_H & z_{awe_l} & z_{awe_h} \\ f_L + a_L & F_{11} & 0 & F_{12} & 0 & \phi_{in} & 0 \\ f_L + a_H & F_{11} & 0 & F_{12} & 0 & \phi_{in} & 0 \\ f_H + a_L & F_{21} & 0 & F_{22} & 0 & \phi_{in} & 0 \\ f_H + a_H & F_{21} & 0 & F_{22} & 0 & \phi_{in} & 0 \\ z_{awe_l} & \phi_{out_1} & 0 & \phi_{out_2} & 0 & \phi_{ff} & 0 \\ z_{awe_h} & \phi_{out_1} & 0 & \phi_{out_2} & 0 & \phi_{ff} & 0 \end{pmatrix}$$

Later : $\phi_{in} = \phi_{ff} = 0$, $\phi_{out_1} = F_{21}$, $\phi_{out_2} = F_{22}$

Kaymak - Poschke (2015)

Closing the Model

Firms

$$r = F_K(K, N) - \delta$$

$$w = F_N(K, N)$$

- Markets Clear
- Government

Corporate Tax + Income Tax + Estate Tax + Sales Tax + Wealth Tax = Transfers + G

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Calibration

Quantitative Exercise

- Calibrate the model to match the 2010 economy (?).
- Introduce Piketty's progressive wealth tax.
- Analyze welfare implications at the steady-state and along the transitional phase.

Calibration

Model Calibration

Parameter Value		Data Target and Value				
		Preset Parameters				
σ	1.1	Risk Aversion				
α	0.36	Capital Income Share				
δ	0.079	K/Y = 3.0				
μ_r	0.022	Average Career Length of 45 yrs.				
μ_d	0.067	Average Retirement Length of 15 yrs.				
		Taxes				
$ au_l$	0.08	Average income tax burden on top 1%				
$ au_c$	0.236	Marginal Corporate Tax Rate, Gravelle (2010)				
$ au_e$		Actual Estate Tax Schedule				
$ au_s$	0.05	Sales tax revenue/GDP				
γ	0.108	G/Y = 0.17				

Model Calibration

Parameter Value		Data Target and Value								
Productivity Process										
$ ho_{lc}$	ρ_{lc} 0.985 Kindermann and Krueger (2014)									
$ ho_{ig}$	0.30	Solon (1992)								
σ_a	0.5×0.38	household earnings variance	0.71							
σ_{f}	0.5×0.62	share of fixed effects	0.62							
	Jointly Calibrated Parameters									
β	0.958	Interest Rate	0.028							
θ	12	mean hours	0.35							
ϵ	1.67	Frisch elasticity	0.6							
ψ^*	0.215	(Pension+Medicare)/GDP	8%							
d_c/r	$0.47 \times K$	Corporate tax revenue/GDP	1.9%							

Kaymak - Poschke (2015)

Results : Income Process

	$\mathbf{z}_{\mathbf{W}} ackslash \mathbf{z}_{\mathbf{W}}$	6.7	19.2	20.5	58.4	61.4	1222
	6.7	0.967	0.009	0	0	0.002	0
	19.2	0.006	0.970	0	0	0.002	0
Π_{WW} :	20.5	0	0	0.967	0.009	0.002	0
	58.4	0	0	0.006	0.970	0.002	0
	61.4	0.034	0.034	0.034	0.034	0.826	0.014
	1222	0	0	0	0	0.205	0.773
	<i>Top</i> 1%	model	data				
	persis	tence				0.74	ca. 0.75
	std. de	ev. of lo	g earnir	ngs grov	vth	0.76	1.1
	skewr	ness of l	og earn	ings gro	wth	-1.72	-1.26
	kurtos	sis of log	g earnir	igs grow	vth	14	18
							► П _R
					Image: The second se	 < □ > < ≡ > 	★ E <

Kaymak - Poschke (2015)

Calibration

Income and Wealth Inequality in 2010

	Top Percentile							
	0.5%	1%	5%	10%	20%	40%	60%	Gini
Wealth Share (Data) Wealth Share (Model)*	0.31 0.43	0.40 0.52	n/a 0.74	0.74 0.86	0.83 0.98	0.95 1.0	0.99 1.0	0.82 0.92
Income Share (Data) Income Share (Model)	0.16 0.16	0.20 0.20	0.35 0.34	$\begin{array}{c} 0.46 \\ 0.45 \end{array}$	0.62 0.53	0.82 0.75	0.94 0.88	0.43 0.43
Earnings Share (Data) Earnings Share (Model)	0.12 0.17	0.16 0.21	0.33 0.34	0.47 0.47	0.57	0.72	0.90	0.42 0.42

Caveat : * Long-run wealth distribution associated with 2010 institutions and income structure.

Kaymak - Poschke (2015)

Calibration

Benchmark Average Tax Rates by Income Group

	Corporate Tax		Estate Tax			Income Tax			
	1%	99%	R/Y	1%	99%	R/Y	1%	99%	R/Y
Data	5.1	1.9	1.9	2.2	0	0.3	25.8	19.4	23
Model	4.6	1.7	1.9	2.5	0.3	0.7	27.6	22.7	24

Note.– R/Y stands for revenue as a fraction of GDP. The data values come from NIPA and from Joulfaian (2013). The data values for the top 1% and 99% are taken from Piketty and Saez (2007).

Aggregate implications of progressive wealth taxes

Scenario	K	N	Ŷ	С	w	r (%)	ATY (%)
benchmark wealth taxes :	100	100	100	100	100	2.8	24.2
basic progressive	86.8	98.9	94.4	97.1	95.4	3.7	20.7
broad progressive	85.2	99.2	94.0	97.1	94.7	3.9	19.7
flat	89.9	100.0	96.2	98.6	96.2	3.5	20.3

(□) (□) (□) (Ξ) (Ξ) (Ξ) Ξ

Composition of tax revenue (% of GDP) : steady-state

		Total tax				
Scenario	wealth	income	corporate	estates	sales	revenue
benchmark wealth taxes :	0	20.0	1.9	0.7	1.3	23.8
basic progressive	2.4	17.7	2.3	0.4	1.3	24.1
broad progressive	3.0	17.0	2.4	0.4	1.3	24.1
flat	2.3	17.3	2.3	0.6	1.3	23.9

Savings response to progressive wealth taxes

Note : The saving propensity is defined as $k'/(k+y^d)$.

Kaymak - Poschke (2015)

Wealth inequality

Distribution of key variables : steady-state comparison

		Gini			
Scenario	Top 1%	Top 5%	Top 10%	Top 20%	coefficient
Wealth :					
benchmark	52.0	73.2	85.5	98.1	0.922
basic wealth tax	40.7	62.7	75.4	93.2	0.875
broad wealth tax	42.9	64.7	78.2	94.1	0.885
flat wealth tax	52.9	74.1	86.2	98.4	0.925
Income :					
benchmark	14.0	28.3	39.7	54.9	0.534
basic wealth tax	14.3	29.9	39.5	54.5	0.531
broad wealth tax	14.6	29.4	40.1	55.1	0.534
flat wealth tax	15.1	29.7	41.1	55.8	0.539

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ●

Distribution of key variables : steady-state comparison

		Gini			
Scenario	Top 1%	Top 5%	Top 10%	Top 20%	coefficient
Disposable income :					
benchmark	12.9	26.2	36.8	51.4	0.485
basic wealth tax	12.7	27.2	36.3	50.7	0.479
broad wealth tax	12.9	26.6	36.8	51.2	0.481
flat wealth tax	13.5	27.0	37.7	51.9	0.487
Earnings :					
benchmark	10.7	26.2	38.9	55.1	0.566
basic wealth tax	11.9	28.8	39.0	53.9	0.566
broad wealth tax	11.8	28.0	39.1	54.5	0.565
flat wealth tax	11.0	26.7	39.4	55.1	0.563
Consumption :					
benchmark	13.8	26.2	36.6	51.5	0.452
basic wealth tax	11.1	24.8	34.5	49.1	0.430
broad wealth tax	11.2	24.2	34.6	49.2	0.431
flat wealth tax	13.1	25.4	35.9	50.5	0.444

Kaymak - Poschke (2015)

Income tax burden for different income groups : steady-state comparison

	Income group						
Scenario	Top 1%	1-5%	5-10%	10-20%	Bottom 80%		
benchmark	27.6	26.5	27.5	21.2	19.3		
basic wealth tax	27.0	23.6	23.4	16.5	15.6		
broad wealth tax	26.3	22.5	22.6	15.6	14.6		
flat wealth tax	25.5	22.6	23.9	17.2	15.1		

・ロト・日本・ヨト・ヨー うらぐ

Welfare of different wealth groups : steady-state comparison

	Wealth group						
Scenario	Top 1%	1-5%	5-10%	10-20%	Bottom 80%		
Workers and retirees :							
basic wealth tax	-6.80	-0.19	0.35	0.62	0.22		
broad wealth tax	-6.38	-0.36	0.12	0.02	0.25		
flat wealth tax	-1.82	-0.73	-0.35	-0.76	0.16		
Workers :							
basic wealth tax	-7.24	-0.21	0.39	0.22	0.22		
broad wealth tax	-6.76	-0.34	0.16	-0.17	0.21		
flat wealth tax	-2.02	-0.70	-0.30	-0.72	0.12		
Retirees :							
basic wealth tax	-6.50	-0.97	0.64	1.63	0.25		
broad wealth tax	-6.13	-1.04	0.20	0.72	0.33		
flat wealth tax	-1.92	-1.21	-0.81	-0.70	0.17		

Value functions for selected productivity levels, benchmark and basic progressive wealth tax economies

Kaymak - Poschke (2015)

Wealth inequality

Transitional dynamics

Values relative to the benchmark economy (= 1), except for r and λ . The new tax system with the basic progressive wealth tax scenario goes into effect at t = 0.

Wealth inequality

э

イロト イポト イヨト イヨト

Revenue from wealth and income taxes (% of GDP)

Kaymak - Poschke (2015)

Wealth inequality

э

Average welfare for selected productivity levels (...in progress)

Kaymak - Poschke (2015)

Wealth inequality

Summary of mechanisms at work

1 Price Externalities ($w \searrow r \nearrow$)

- asset poor salaried are hurt.
- benefits upper middle class who have some assets, but are not touched by the wealth tax.
- 2 Fiscal Externalities
 - drop in income taxes : benefits all, especially the income-poor workers offsetting the decline in pre-tax earnings.
 - less output and earnings : crowds-out existing transfer schemes, e.g. pensions.
- **3** Transitional Dynamics
 - pleasant ride for top groups eating their wealth away.
 - tough ride for the non-wealthy giving up consumption to accumulate wealth.

Conclusion/Discussion

Progressive wealth tax results in ...

... substantial tax revenue : 2.4-3.0% of GDP.

- ... large output losses in the long-run : 5-6%.
- ... results in a substantial reduction in wealth concentration : 9.1-11.3 drop in top 1% share.
 - due to a decline in the savings rate of top groups.
 - and to accumulation of new wealth by the rest.
- ... marginal gains in social welfare in the long-run.
- ... dominated by losses in social welfare in the short-run.
 - due to reduced consumption among the non-wealthy in accumulation of new wealth.
 - and to reduction in social transfers, e.g. pension pay.

イロト イボト イヨト イヨト 一日