Understanding contagious bank runs

Stefan Trautmann Heidelberg

December, 2015

with Martin Brown (St.Gallen) and Razvan Vlahu (DNB)

Player B	up	down	
Player A			
up	60, 60	0, 40	
down	40, 0	20, 20	

Why would anyone not play *up*? ..strategic uncertainty, beliefs,..

deposit repaid, interest

Depositor B	keep deposit	withdraw deposit	
Depositor A			
keep deposit	60, 60	0, 40	
withdraw deposit	40,0	20, 20	

Bank fails; Early liquidation value of 40; Sequential service constraint

assets	liabilities
cash = 1	equity = 1
loan = 2	deposit = 1
	deposit = 1

- pooling
- maturity mismatch
 - => deposit: on demand
 - => loan: long term
 - => loan cannot easily be sold at full value

assets	liabilities
cash = 1	equity = 1
loan = 2	deposit = 1
	deposit = 1

assets	liabilities
cash = 1	equity = 0
loan = 1	deposit = 1
1	deposit = 1
Problems	
with loan	hank

bank solvent

assets	liabilities	Only 1 unit to nav
cash = 1	equity = -1	back, but 2 depositors:
loan = 0	deposit = 1	Information => be the
	deposit = 1	first, run

"fundamental run"

bank insolvent: bankrupt

assets	liabilities	
cash = 0	equity = 0	"small" relative
loan = 2	deposit = 1	ueposits/ioans
	deposit = 1	

bank solvent

to

cash = loan = 2	0 2	e d d	quity = 0 eposit = 1 eposit = 1	}
Player B Player A	up		down	
р	1, 1		0, .9	
lown	.9, 0		.45, .45	

assets

liabilities

solvent bank exposed to bank run: depositor who believes that the other depositor withdraws also wants to withdraw \Rightarrow depositors incur a loss on average (inefficient) \Rightarrow solvent bank fails; "pure panic run" \Rightarrow Type of coordination game shown before

Bank runs relevant? Before 2007: history of economics

 After 2007: Northern Rock (classic queuing); Fortis; Latvia: SEB (ATMs); Spain: July 2012, 74 billion taken from savings accounts (4.5% reduction in savings balance); Jiangsu/China: March 2014

12 December 2011 Last updated at 12:11 GMT

Panic fuels Latvian run on bank

Some customers have rushed to take their money out of the bank

Bank runs relevant? Before 2007: history of economics

 After 2007: Northern Rock (classic queuing); Fortis; Latvia: SEB (ATMs); Spain: July 2012, 74 billion taken from savings accounts (4.5% reduction in savings balance); Jiangsu/China: March 2014

> Coordination problem (panic)? Information? Liquidity demand correlated? => Experimental identification

Bank runs relevant?

Before 2007: history of economics

• After 2007: Northern Rock (classic queuing); Fortis; Latvia: SEB (ATMs); Spain: July 2012, 74 billion taken from savings accounts (4.5% reduction in savings balance); Jiangsu/China: March 2014

Deposit insurance!?

People seem to be relatively unaware of it, and about its specifics (Bartirolo 2011; Sträter et al. 2008)

Insured also run (e.g. Iyer-Puri 2012; He-Manela 2012; Karas et al., 2013; Pyle et al., 2012); trust in insurance fund?

Bank runs relevant?

Before 2007: history of economics

 After 2007: Northern Rock (classic queuing); Fortis; Latvia: SEB (ATMs); Spain: July 2012, 74 billion taken from savings accounts (4.5% reduction in savings balance); Jiangsu/China: March 2014

• Deposit insurance!?

Deposit insurance bad for bank incentives: is it safe to reduce it, get rid of it? => experiments to study the counterfactual

Bank run experiments

Madies (2006): Is there a coordination problem? => observes coordination failure; partial deposit insurance does not help

Garratt-Keister (2009): Role of liquidity demand. => Find few panic runs; uncertain liquidity shocks can trigger panics; role of repeat withdrawal opportunities

Schotter-Yorulmazer (2009): Dynamics; <u>insolvent</u> banks. => observing others leads to faster runs; insiders; partial insurance works

Kiss et al. (2011/2012): Dynamics;sequential => observability of withdrawals reduces incentive to run for early depositors; partial insurance works

Trautmann-Vlahu (2013): Strategic defaults.

=> Uncertainty about bank quality and other borrowers leads to more coordination failure (w/o affecting equilibria)

Bank run experiments

Madies (2006), Garratt-Keister (2009), Schotter-Yorulmazer (2009), Kiss et al. (2011/2012), Trautmann-Vlahu (2013); Martin Dufwenberg's review chapter (2013), "Banking on experiments"

⇒pure panic runs surely exist in lab
⇒depend on banks' strength
⇒depend on uncertainty about banks and other depositors
⇒sequential structure important

'within bank contagion'

Santander insists Brits should not fear Spanish banks panic

Contagious bank runs

Cyprus Rattled Europe Deposits

🛛 💻 2 Comments

By STEVE HAWKES Last Updated: 19th By GEOFFREY T. SMITH Business Editor

Updated May 29, 2013 4:28 p.m. ET

📥 Print

BANKING giant Santander UK i crisis hit the high street.

The euro zone's messy bailout of Cyprus caused a mini-run on banks in many of the currency union's 17 members in April, exacerbating a decline in lending to the real economy, data from the European Central Bank showed Wednesday.

The Cyprus rescue was notable for being the first time that the euro zone imposed losses on bank depositors in order to bring banks seen as important to the financial system back to an acceptable level of capitalization.

Contagious bank runs

2012: Spanish banks in trouble

Do German savers run on German banks?

information about banks' fundamentals?

panic contagion?

remark: stress tests

"Field evidence:"

- Great depression (Calomiris-Mason 1997; Saunders-Wilson 1996)
- Emerging markets (Iyer-Puri 2012; Iyer-Peydro 2013; De Graeve-Karas 2010)
- \Rightarrow some evidence on "contagion" for solvent banks
- ⇒ maybe correlated shocks across banks/ across households
- \Rightarrow if contagion, not clear which channel
- \Rightarrow in general: under what conditions does it happen?

Contagious bank runs: experiments Our study (& Chakravarty et al. (2014)*):

Does the observation of a coordination failure (bank run) at another bank make depositors more likely to run?

Role of economic linkages between the banks?

Transmission channel (which beliefs)?

*Chakravarty, Surajeet, Fonseca, Miguel A. and Kaplan, Todd R.: "An Experiment on the Causes of Bank Run Contagions." EER

'strong bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	60, 60	0, 40
withdraw deposit	40, 0	20, 20

'weak bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	50, 50	0, 40
withdraw deposit	40, 0	20, 20

• same equilibria

- both banks solvent
- both banks can fail

'strong bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	60, 60	0, 40
withdraw deposit	40, 0	20, 20

BUT: dominance criteria suggest (keep, keep) in strong bank more robust: PD=(a-b)/a RD=ln[(b-d)/(a-c)]

'weak bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	50, 50	0, 40
withdraw deposit	40, 0	20, 20

'strong bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	60, 60	0, 40
withdraw deposit	40, 0	20, 20

'weak bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	50, 50	0, 40
withdraw deposit	40, 0	20, 20

• If bank's type uncertain:

- beliefs about the banks' strength
- beliefs about the other player

'strong bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	60, 60	0, 40
withdraw deposit	40, 0	20, 20

'weak bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	50, 50	0, 40
withdraw deposit	40, 0	20, 20

Note: Interest rate known; here *expected* return interpretation: other uncertain reasons for failure included in payoffs; uncertainty about type only

- **Design: contagion**
- 2 types of depositors:

Leaders:

- know their bank's fundamentals (=know the game payoffs)
- do not observe others

1. no leaders ("Baseline")

- 2. no linkages (banks uncorrelated)
- 3. linkages (banks identical)

Followers:

- do <u>not</u> know their bank's fundamentals (uncertainty, 50-50)
- observe 1 coordination outcome of leaders

Design: Implementation Linkages

Sessions of 20 subjects

Treatment Linkages, same bank fundamentals (uncertain for followers)

Design: Implementation Linkages

Sessions of 20 subjects

Treatment Linkages, same bank fundamentals (uncertain for followers)

Design: Implementation Linkages

Treatment No-Linkages, uncorrelated bank fundamentals (uncertain for followers)

Design: more details

=> leaders not aware of being "observed," and followers knew that

=> followers played two rounds with the same bank, but new partner

- => measured beliefs about
 - strength of bank
 - whether other player withdraws
- no incentives
- Likert scale which we normalize [0,1]
- on the same screen as decision

Design: more details

=> leaders not aware of being "observed," and followers knew that

=> followers played two rounds with the same bank, but new partner

- => measured beliefs about
 - strength of bank
 - whether other player withdraws
- => risk attitude (loss aversion)
- ⇒ Treatment Baseline: no leaders, bank uncertain
- \Rightarrow additional leaders

 \Rightarrow Between-subject design; 1 point=10c; run at CREED lab

Conditions for followers (overview):

Treatment:	Linkages	No- Linkages	Baseline
Conditions:			
Uncertainty about asset quality of their bank	Yes	Yes	Yes
Observe leaders behavior	Yes	Yes	No
Asset quality of leader-bank and follower-bank always identical	Yes	No	_

Transmission channel?

 how is each stage of the contagion channel affected by the presence of linkages?

• which belief channel is more relevant?

Transmission channel?

- p: probability bank strong
- q: probability other depositor withdraws

 $E[payoff | Keep] = (1-q) \cdot p \cdot 60 + (1-q) \cdot (1-p) \cdot 50 = (1-q)(50 + 10p)$

 $E[payoff | Withdraw] = (1-q)40 + q \cdot 20 = (2-q) \cdot 20$

E[payoff | Withdraw] - E[payoff | Keep] = 30q - (10 - 10q)p - 10

p↑ => -10+10q q↑ => +30+10p Given our parameter choices, would expect stronger effect of belief about others than about bank

Results:

Results: Leaders

Bank type:	Strong bank	Weak bank
Number of leaders games:	20	20
0 withdrawals	12	7
1 withdrawal	7	11
2 withdrawals	1	2
Withdrawal frequency	23%	38%

=> Fewer withdrawals for strong banks, but low overall rate of withdrawal (solvent banks!); 'contrast effect'

=> Variation in observed # of withdrawals (leaders' main role: create observation for followers)

Results: Leaders

Bank type:	Strong bank	Weak bank
Number of leaders games:	20	20
0 withdrawals	12	7
1 withdrawal	7	11
2 withdrawals	1	2
Withdrawal frequency	23%	38%

in the analyses of followers we pool 1 and 2 withdrawals. All effects are in fact monotonic, but too small sample size with 2 withdrawals:

no withdrawal vs. withdrawals

Treatment		Baseline
Observed withdrawal by leaders		
Withdrawal frequency		23%
Belief other withdraw		0.31
Belief bank strong		0.55
Observations		n=60

 $SEV(keep) = .55^{*}(.69^{*}60) + .45^{*}(.69^{*}50) = 38.30$ $SEV(run) = .69^{*}40 + .31^{*}20 = 33.80$

Treatment	No-Li	nkages	Baseline
Observed withdrawal by leaders	Yes	No	
Withdrawal frequency	21%	16%	23%
Belief other withdraw			0.31
Belief bank strong			0.55
Observations	n=28	n=44	n=60

Treatment	No-Linkages		Linkages		Baseline
Observed withdrawal by leaders	Yes	No	Yes	No	*
Withdrawal frequency	21%	16%	52%	13%	23%
Belief other withdraw	0.43	0.38			0.31
Belief bank strong	0.56	0.56			0.55
Observations	n=28	n=44	n=48	n=24	n=60

Treatment	No-Linkages		Linkages		Baseline
Observed withdrawal by leaders	Yes	No	Yes	No	
Withdrawal frequency	21%	16%	52%	13%	23%
Belief other withdraw	0.43	0.38	0.52	0.31	0.31
Belief bank strong	0.56	0.56	0.50	0.60	0.55
Observations	n=28	n=44	n=48	n=24	n=60

negative signal seems to have stronger effect (also in Chakravarty et al. 2014)

Treatment	Link	ages	
Observed withdrawal by leaders	Yes	No	
Withdrawal frequency	52%	13%	
Belief other withdraw	0.52	0.31	
Belief bank strong	0.50	0.60	
Observations	n=48	n=24	

 $SEV(keep/obs>0) = .50^{*}(.48^{*}60) + .50^{*}(.48^{*}50) = 26.40$ $SEV(run/obs>0) = .48^{*}40 + .52^{*}20 = 29.60$ $SEV(keep/obs=0) = .60^{*}(.69^{*}60) + .40^{*}(.69^{*}50) = 38.64$ $SEV(run/obs=0) = .69^{*}40 + .31^{*}20 = 33.80$

Results: Followers;	beliefs =>	withdrawals
	Treatment	Baseline
Depende	nt variable	Withdraw
Leaders withdrawal		
Belief other withdraw		0.722***
		[0.185]
Belief bank strong		-0.217
		[0.230]
Observations		60
Socio-economic controls		Yes
R-squared		0.30
Model		OLS

Results: Followers; beliefs => withdrawals					
Treatment	No-Linkages				
Dependent variable Leaders withdrawal		Withdraw			
Belief other withdraw	No effect of observation	0.695*** [0.166]			
Belief bank strong	or withdrawar on Deners	-0.188 [0.219]			
Observations		72			
Socio-economic controls		Yes			
R-squared		0.27			
Model		OLS			

Results: Followers; beliefs => withdrawals

Treatment		Linkages	
Dependent variable	Belief other withdraw	Belief bank strong	Withdraw
Leaders withdrawal	0.223*** [0.0750]	-0.117** [0.0472]	
Belief other withdraw			1.053*** [0.132]
Belief bank strong			-0.0413 [0.203]
Observations	72	72	72
Socio-economic controls	Yes	Yes	Yes
R-squared	0.14	0.12	0.51
Model	OLS	OLS	OLS

Transmission channel

with linkage

some unexplained portion

Belief about other person

Observed withdrawal

Withdrawal decision

Belief about <u>bank</u>

no linkage

Observed withdrawal Belief about other person

Belief about <u>bank</u> Withdrawal decision

Chakravarty et al. (2014)

- Similar setup:
- one group of "leaders" (know that there exist followers)
- one group of "followers"
- linkages vs. no linkages

But different design:

- banks' strength evolves over time (i.e., within-bank info)
- larger groups of 10 (5 trivial), minimum effort game
- no beliefs measured

Results:

- also find contagion
- find contagion also in no-linkages condition, but weaker
- find stronger effect of bank fundamentals (for leaders & followers) => "strong bank stronger; weak bank weaker"

remark: bank fundamentals can become more relevant ⁴⁶

'super strong bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	60, 60	50, 40
withdraw deposit	40, 50	20, 20

unique eq.

'weak bank'

Depositor B Depositor A	keep deposit	withdraw deposit
keep deposit	60, 60	0, 59
withdraw deposit	59, 0	29.5, 29.5

very likely to withdraw

back to current paper:

within-bank behavior after contagion

- Depositor game of followers repeated once:
- same bank
- same (or rather: no new) info about Leaders withdrawals
- new info about first round
- different partner depositor

Question: How does direct experience amplify/buffer against observed behavior?

within-bank behavior after contagion

Treatment			Baseline			
Leaders withdrawal						
Withdrawal round 1					Yes	No
Withdrawal frequency					57%	24%
# obs					n=14	n=46

note: first round 23% => only negative effect of experience

within-bank behavior after contagion

Treatment	No-Linkages		Baseline	
Leaders withdrawal	Yes	No		
Withdrawal round 1	Yes No	Yes No	Yes No	
Withdrawal frequency	33% 18%	14% 16%	57% 24%	
# obs	n=6 n=22	n=7 n=37	n=14 n=46	

modest, even when compared to baseline

within-bank behavior after contagion

Treatment	Linkages				Baseline	
Leaders withdrawal	Ye	es	N	Ō		
Withdrawal round 1	Yes	No	Yes	No	Yes	No
Withdrawal frequency	68%	22%	0%	5%	57%	24%
# obs	n=25	n=23	n=3	n=21	n=14	n=46

- slight amplification (52% => 68%)
- positive experience strongly reduces withdrawals (52% => 22%)

Sum up Experiment

- clear evidence that coordination problems can be contagious
- no contagion if effect on beliefs is not triggered by observed withdrawals
- local experience may buffer against contagious effect

Systemic risk?

- Panics and panic contagion seem reasonable options (only?) if banks "look similar"
- Lack of diversity may lead to systemic risk (Acharya (2009), Ibragimov *et al.* (2011), Wagner (2010))
- Overall strong tendency to keep deposit; requires strong belief effect to initiate run