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Comovements in Corporate Waves

Abstract

This paper analyzes the common factor that drives the cyclical movements in the cor-

porate event waves. We show that this common corporate factor is closely linked to the

economic business cycles. We, first, document the statistical and the time-series proper-

ties of the corporate event waves to determine the commonalities, the interdependence,

and the comovements between them. We show that all the waves have similar ARMA

and ARCH characteristics. Moreover, we conjecture that there are two major factors

forming a corporate event wave: a systematic (or common) factor and a wave-specific

(or idiosyncratic) factor. To study the common dynamics and the common factor, we

propose a factor model with ARMA and ARCH properties, and develop a novel Bayesian

estimation method for this model. We find that the percentages of the wave series that

are driven by the common factor range from 3.54% for the IPO wave to the 67.5% for the

divestitures wave. We also check whether the estimated common factor can be proxied by

any major macroeconomic or financial variable. We find that the best proxy candidates

are the variables closely associated with the business cycle: the industrial production (ag-

gregate output), the inverse of the long-term interest rates (10-year T-bond yields), and

the S&P 500 index (stock market levels).

Keywords: Bayesian, Corporate Events, Factor Analysis, Time Series Analysis, Waves.

JEL Classification: C11, C32, G14, G34, G35.



I. Introduction

Corporate events, such as divestitures (DIV), initial public offerings (IPO), mergers and

acquisitions (M&A), stock repurchases (REP), and seasoned-equity offerings (SEO) are

a result of individual firms’ decisions. However, the decision associated with each event

is likely to be affected by various external factors, such as macroeconomic conditions,

industry shocks, and stock market valuations. In the current literature, each of these

events’ time-series (or briefly waves) have been analyzed in isolation from each other,1 but

these external factors should form some commonalities between the waves. For example,

all of these corporate events’ time-series series are found to exhibit cyclical pattern,2 but

“What causes cyclical behavior in these events’ time-series?” is still an open question.

This question is an important one for the economic policy-makers and corporate man-

agers. It might reveal how – if they want to – policy-makers can influence these corporate

event waves through monetary or fiscal policies. Similarly, corporate managers may find

it useful to know what external factors create favorable conditions for enacting certain

restructuring events in their firm. They can predict the formation of such an environment

by observing the changes in the underlying variable(s) that cause (or that indicate ahead

of time) the rise in the corresponding wave.

This study contributes toward finding the answer to this question by extracting the

underlying common factor that causes the cyclical behavior in all the waves, and by

showing that that it is closely associated with the business cycle. In a related analysis, we

also try to understand the basic interdependence and co-movements between the waves

and how this interdependence changed over time. Does the increased “heat” in one wave

cause an increase in another one (Granger causality)? We determine empirically the time-

variation in the degree of comovements between the waves. Understanding the changes

over time in the strength of interdependence between the waves would enable us to identify

the economic conditions that were prevalent during the periods of high correlations and

1The exceptions are the papers by Rau and Stouraitis( 2007) and Dittmar and Dittmar (2008).
2For evidence on divestitures see Comment and Jarrell (1995), Berger and Ofek (1999), and Schlinge-

mann, et al. (2002). For documentation of IPO cycles see, among others, Ritter (1984), Lowry and

Schwert (2002), Lowry (2004), Pastor and Veronesi (2005), and Yung, et al. (2008). Some studies on

M&As waves are Mitchell and Mulherin (1996), Shleifer and Vishny (2003), Harford (2005), and Rhodes-

Kropf, et al. (2005). Some relevant papers in the SEO literature are Choe, et al. (1993) and Bayless and

Chaplinsky (1996). Finally, for evidence on repurchases waves refer to Grullon and Michaely (2002) and

Dittmar and Dittmar (2007).
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thus, could guide us in understanding what is causing the event cycles.

We start by observing that the monthly dollar volume3 of DIV, IPO, M&A, REP, and

SEO activity is showing a substantial variation over time (see Figure 1). The sources of

this volatility is not completely known to this date. In certain times the dollar volumes of

these events seems synchronized, and in other times the correlation between them is quite

low. Since we aim to find a systematic explanation for the cyclicality and the comovements

in all the waves, we avoid any wave-specific or firm-specific reasons affecting a certain

corporate event. The literature has already determined many cross-sectional (across the

individual firms) causes of each wave.4

We, essentially, postulate that there are two types of forces that shape the pattern of

each wave. First one is more systematic in nature, and it is closely related to the aggregate

economy and the prevalent market conditions. We call it the systematic or the common

factor forming the waves. It affects all the waves all the time, but its effects can be time-

varying and cross-sectionally different across the waves. Some examples of the systematic

factor could be the macroeconomic variables or the asset valuation measures. The second

one is the idiosyncratic factor (all the wave- and the firm-specific factors), so it can not be

estimated from the aggregate time-series of the events; it can only be deducted. Examples

for the idiosyncratic factors can be cited as exogenous industry shocks that make certain

event more value-increasing to the firm than the others, institutional changes that make

it cheaper (or more expensive) to do one of the events but not the other, manager’s belief

that a certain restructuring will improve the firm’s productivity, etc.

The common factor affecting the time series of all corporate waves must exists, because

firms are part of the “big ocean” called aggregate economy. Their apparently-independent

corporate decisions are likely affected by the conditions of this economy, which can be

changed by various macroeconomic shocks, Government’s or Federal Reserve’s actions,

etc. Further, these conditions should be felt by all the firms – diversifying, merging,

equity issuing and so on – and thus, these conditions should form a natural commonality

in the waves’ time series.

3We explain later on in the paper the reasons for using the monthly dollar volume measure rather

than monthly number of events measure, which is more common in the related literature (see Rau and

Stouraitis (2007) paper).
4Refer to, among others, Colak and Whited (2007) for divestitures, Lowry (2003) and Pastor and

Veronesi (2005) for IPOs, Eckbo and Masulis (1995) for SEOs, Jovanovic and Rousseau (2001) and

Maksimovic and Phillips (2001) for M&As, and Dittmar and Dittmar (2007) for repurchases.
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Also, in this paper, we suggest a methodological (or a systematic) framework for ana-

lyzing the relationship between any two corporate event waves. This method is the factor

analysis. Many financial and macroeconomic activities are characterized by some com-

mon movements. The factor analysis has been the predominant choice in the economics

and the financial literature to analyze these common behaviors (for some examples see

Bekaert and Hodrick (1992), King et al. (1994), Dungey et al. (2000), and Kose, et al.

(2003)). In our case, we do not know, a priori, what this common factor is. So we are

confined to estimating a latent factor model in which the monthly IPO, SEO, DIV, REP,

and M&A volume is affected by the changes in an unobservable latent variable and by a

wave-specific residual variable.

To apply the factor analysis in this context, we first document – as far as we know, for

the first time in the literature – the time-series characteristics (ARMA-GARCH) of these

waves. Somewhat surprisingly, we find that all five corporate event waves do show similar

time series properties: they all can be characterized by ARMA(1,1) and GARCH(1,1).

Also for the first time in the literature, we use a novel Bayesian approach (developed for

the purposes of this study) to extract the common factor driving these waves. Thus, our

paper has important contributions also to the Bayesian factor analysis literature.

The novelty in our econometric approach lies in methodologically developing and em-

pirically implementing a Bayesian method for extracting the common factor while the

factor has ARMA(1,1) and ARCH(1) properties.5 We have considered alternative econo-

metric methods for the estimation of the factor model. The proposed common factor

model can not be estimated with GMM or Kalman Filter, because of the presence of

heteroskedastic conditional variances in the time series of our waves. If we employ max-

imum likelihood (ML) estimation, we would need to deal with expectations and their

approximations. This would make the ML estimation quite complicated. Considering the

complexity of the model, Bayesian estimation is easier and tractable, while its flexibility

in the analysis is another advantage.

Upon extracting the common factor using our Bayesian method, we check which

macroeconomic variables are the primary candidates for this common factor. After con-

sidering several such variables, we find that the best candidates are the variables closely

associated with the business cycle: the industrial production (i.e. aggregate output), the

inverse of the long-term interest rates (10-year T-bond yields), and the S&P 500 index

5We explain later on why we are confined to estimating ARCH(1) instead of GARCH(1,1).
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(stock market levels). This suggests that the business cycle (and/or the stock market)

are the main causes of the common cyclical movements in the corporate event waves.

We also report what percentage of each wave is driven by this common factor, and

how does this percentage changed over time. We find that the DIV and the REP waves

have the highest proportion of the wave explained by the systematic factor (67.50% and

65.10%, repectively). The wave that is explained the least by this systematic factor is

the IPO wave (only 3.54%). Therefore, the waves that are the most dependent on the

exogenous economic factor, seem to be the divestitures and the repurchases waves.

Brief outline of the remaining parts of the paper is as follows. Section II describes

our data sources and the formation of our wave series. Section III reports the statistical

and time series characteristics of these waves and their interactive properties. Section IV

introduces a latent factor model of interdependence between these waves, and suggests a

Bayesian estimation method for extracting the common factor affecting these waves. The

same section also reports the results from the estimation, and tries to identify specific

set of macroeconomic and financial variables that might be forming this common factor.

Section V concludes and suggests further venues of research in this area.

II. Corporate Waves and Business Cycles

While both the business cycles literature in economics and the corporate events literature

in finance are well developed fields, it is surprising that we still do not know the answer

to a simple question like, “Roughly, what percentage of a given corporate wave can be

explained by an aggregate factor, like the business cycle?” This study attempts to answer

questions like this, and in doing so, it links these two literatures.

A. Relevant Corporate Waves Literature

Each five of the aforementioned corporate events has been analyzed extensively before,

and the literature explaining the causes of each wave is quite extensive. However, the

attempts to link these waves with each other under a common analytical theme has been

a more recent phenomenon. Several alternative explanations emerged as to why these

waves are so strongly interrelated.
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A.1. Neoclassical Explenation

According to this explanation, changing macroeconomic and industry conditions would

induce the firms to engage in various efficiency increasing and value maximizing events.

Since each firm’s situation is unique, and during economic expansions many variables

change at the same time (uncertainty, cost of capital, cash inflows, liquidity, productiv-

ity, growth rates, capital needs, etc.), the most optimal action for a particular firm can

differ from the optimal action(s) of others. Hence, we can see intense activity in several

corporate events simultaneously.

Dittmar and Dittmar (2008), for example, show that, inherently opposite event waves,

such as the stock repurchases wave and the stock issuances wave are highly correlated,

because of economic, and not market misvaluation, reasons. Market overvaluations would

have caused most of the firms to choose the equity issuance event as the most value

maximizing response. Stouraitis and Rau (2009), expand their scope of analysis to five

different corporate waves (new and seasoned stock issues, stock and cash-financed M&As,

and stock repurchases), and also find some support for the neoclassical explanation: fac-

tors such as low unemployment, high future capital expenditures, and low cash holdings,

have explanatory power over equity issuance waves.

At individual wave level, numerous studies show that various neoclassical factors ex-

plain the aggregate series of a certain corporate event. Availability in capital liquidity and

relaxation of financial constraints, for example, affect divestitures (Schlingemann, et al.,

2002; Eisfeld and Rampini, 2006), IPOs (Lowry, 2003), and M&As (Harford, 2005). Time

varying cost of capital is associated with SEO waves (Choe, et al., 1993; Lucas and Mc-

Donald, 1990; Bayless and Chaplinsky, 1996) and takeovers (Weston, et al., 2004). GDP

growth affects IPOs (Lowry, 2003), SEOs (Choe, et al., 1993), M&As (Maksimovic and

Phillips, 2001), and divested assets (Maksimovic and Phillips, 2001). Finally, Stephens

and Weisbach (1998) show that repurchases are procyclical.

A.2. Market Timing Explanation

This explanation suggests that firm managers undertake certain corporate event to time

the over- or under- valuations in the stock market. According to this hypothesis, while

some waves should peak around the same time (like, IPOs and SEOs), others should

be negatively correlated (for example, SEOs and Repurchases; M&As and Divestitures).

While thorough and coherent empirical analysis on how and when market misvaluations
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can cause all the major corporate waves to be positively correlated is still missing from

the literature, Stouraitis and Rau (2009) present partial evidence on how SEO and IPO

waves can occur simultaneously in industries with large cross-sectional dispersion of firm

valuations.

Numerous studies, in contrast, have shown the effects of market valuations on the

individual waves. M&A waves tend to coincide with rising stock markets (Rhodes-Kropf

and Vishwanathan, 2005; Shleifer and Vishny, 2003; Dong, et al., 2006). Baker and

Wurgler (2000) explains brisk equity issuance activity with market overvaluation and

the related market timing by the managers. Graham and Harvey (2001)’s paper reports

evidence of some managers believing in “window of opportunity” in equity issuance. Large

number of empirical studies attribute IPO waves to investor sentiment (see, for instance,

Loughran and Ritter, 1995; Rajan and Servaes, 1997; and Lowry, 2003). Finally, several

recent studies attempt to link the repurchases activities to recent underperformance in

the stock market (Brav, et al., 2005; Jagannathan, et al., 2007; and Peyer and Vermaelen,

2007).

A.3. Other Explanations

Various other, more random, explanations for the link between several waves can also

be found in the literature. Fama and French (2001) show that the positive relationship

between repurchases wave and the M&A wave can arise purely due to mechanical rea-

sons related to how M&A activities are financed. Stouraitis and Rau (2009) point similar

mechanical reasons for the relationship between equity issuances and M&A activity. Lyan-

dres, et al. (2007) theoretically show how IPO decision may be driven by a subsequent

merger strategy.

III. Data and Wave Measures

This section describes the data we use to construct our measures of the corporate event

waves. We use five different event samples: one sample of firms that went through a

divestiture event, second sample is constitute of firms undergoing initial public offering,

third event sample is firms engaging in Mergers & Acquisitions, fourth sample of events

covers firms repurchasing their stock, and the last event sample includes firms issuing
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seasoned equity.6 We describe the construction of each wave separately.

A. Divestitures (DIV) Wave

We use Security Data Corporation (SDC)’s Mergers and Acquisitions Database to identify

all the divestitures announced during the period from January 1st 1981 to December 31st

2007. Unfortunately this database does not provide reliable information about divesti-

ture events for the years before 1981, so we start our sample in January 1981 (or briefly

1981:01). The initial sample covers 63,881 divestitures that are not subsequently with-

drawn. We rely on SDC’s definition of what a divestitures event is and thus, we do not

perform any further sample selection criteria. However, not all divestiture observations in

this initial sample have information about the “value of transaction,” which is a necessary

variable for us to construct our dollar-volume wave measure. Therefore, after eliminating

observations with missing “value of transaction” item, we end up with a final sample of

28,390 divestitures events for the period between 1981 and 2007.

For each month in our sample period we calculate the total volume of transactions

as the sum of the “value of transaction” items of all the divestitures in our final sample,

with announcement dates in that particular month. Total volume of transactions is then

converted to year 2000 dollars using monthly CPI data available through Bureau of Labor

Statistics. We call this measure VolDivM. The natural logarithm of monthly observations

of VolDivM constitutes our divestitures wave (briefly LogVolDIV ). For this wave we have

observation for each month between 1981:01 and 2007:12 i.e., there are no months where

we have no divestiture events taking place.

B. Initial Public Offerings (IPO) Wave

We use Thompson Financial’s Securities Data Company (SDC) and Jay Ritter’s hand

collected data (from 1975 and 1984) to construct our initial sample of IPO firms. We

apply the following sample selection criteria to this initial sample. To be consistent with

6We chose those five event waves, because we believe they are the most commonly observed corporate

events, and they are the most widely analyzed in the literature. They also can be sorted into pairs; each

pair capturing two sets of opposing activities. Merging vs. divesting firms, and equity (new or seasoned)

issuing vs. equity repurchasing firms. Furthermore, the availability of high frequency data for the other

corporate events places major restrictions on their analysis: there are many months with no event taking

place in them.
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the Divestitures wave’s sample period, we require that the IPO should be issued between

1981:01 and 2007:12. We eliminate REITs, closed-end funds, ADRs, MLPs, and LBO

firms from the sample. We also exclude any issuance with missing proceeds information,

because this variable is essential in calculating our IPO wave measure. After these filters,

the SDC source yields a sample of 9,257 firms. Ritter’s dataset adds 511 new IPOs not

covered by SDC. Thus, our final sample consists of 9,768 initial public offerings.

The data items we extract from this database are the date of the issue and the dollar

value of proceeds raised by the new public firm. In case of disagreement between the data

sources about the reading in certain common observations, we use Ritter’s values first

and then SDC’s values.

Our IPO wave (LogVolIPO) is constructed similarly to the divestitures wave: for

each month in the sample period the total dollar volume (VolIPOM) is calculated as the

logarithm of the sum of the proceeds of all the IPOs with announcement dates within

that month, converted to year 2000 dollars. For five months in our sample period (in

2001, 2002, and 2003) we have no IPO activity, which means that for those months the

IPO dollar volume is zero.

C. Mergers and Acquisitions (M&A) Wave

We use SDC’s Domestic Mergers and Acquisitions database to extract our sample of M&A

events between 1981:01 and 2007:12 with nonmissing information about the value of the

transaction.7 We define a transaction as an M&A event, if it is completed, and if it is

classified by SDC as a merger or an acquisition of majority interest. We eliminate cross-

border deals and deals involving liquidations, bankrupt firms (Chapter 11), joint ventures,

or government firms. We do not distinguish between M&As with stock or with cash, but

we make sure that the target’s public status is not classified by SDC as a subsidiary.8

This leaves us with a final sample of 17,545 M&A events.9

7To be consistent with Divestitures sample, we start M&A sample period at 1981:01, as well.
8In some instances the divested subsidiary may also be counted as an M&A by SDC. By excluding

the targets that are subsidiary of another firm, we assure that there is no overlapping between DIV and

M&A waves.
9Our definition of an M&A event is different from the descriptions of M&As in Rau and Stouraitis

(2008)’ paper. We consider an M&A transaction to be an event that is only between two stand-alone

firms. They include tender offers, LBOs, acquisition of partial or minority interest, and divestiture events

to their M&A sample. We consider divestitures to be a reciprocal event to an M&A event: first one is
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Using this sample we form our M&A wave (or LogVolMA) by adding the values of all

the M&A transactions announced within a given month (expressed in year 2000 dollars)

and then taking the natural logarithm of the sum. For all the months within the sample

period we have at least one M&A event taking place, so we have no missing monthly

observations for this wave.

D. Stock Repurchases (REP) Wave

From SDC’s Domestic Mergers and Acquisitions database we obtain our raw sample

of 20,793 buybacks (repurchases + self-tender offers) announced between 1981:01 and

2007:12. We eliminate observations that involve liquidations, joint ventures, limited part-

nerships, LBOs, or government firms. We also make sure that the deals do not belong

to firms that are subsidiary of another firm, that they are not later on withdrawn, and

that they do not have missing value of transaction. This leaves us with a final sample of

18,434 REP events.

Using this sample we form our REP wave (or LogVolREP) by adding the dollar values

(in year 2000 dollars) of all the REP transactions announced within a given month, and

then taking the natural logarithm of the sum. All the months in our sampled period have

REP events in them.

E. Seasoned Equity Offerings (SEO) Wave

Data on seasoned equity issuance is from the SDC’s New Issues database. We concentrate

only on U.S. common stock issues announced between 1981:01 and 2007:12. Again, we

exclude all the unit and the rights offers, and all the issuances by REITs, ADRs, MLPs,

and closed-end funds. We also eliminate all the private placements and all the observations

with missing proceeds data. We do not eliminate any offerings that belong to the same

firm for the same year, as is commonly done in the SEO literature. We believe that such

proximity of events does not cause a problem for our analysis. The remaining sample of

SEO events with nonmissing proceeds data item is 10,743.

The SEO wave (or LogVolSEO) is measured as the natural logarithm of total proceeds

raised from all SEOs issued within a given month. Again, all the dollar amounts are

an action showing the desire of a firm to get rid of some businesses, and the second one is a transaction

that combines some businesses. So, we analyze two distinct event waves: a wave capturing the divesting

actions and a wave representing the merging events.
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converted to year 2000 dollars using monthly CPI data. None of the months in our

sample period have missing observations of the SEO wave measure.

Figures 1A through 1E depict the plot of these five waves over time.

IV. Statistical and Time-Series Properties of Waves

A common estimation methodology used in asset pricing literature for models with latent

factor have been GMM. However, any presence of autoregressive and GARCH features in

the returns data would lead to biased GMM estimates, and would require using alternative

estimation methods.10 Therefore, to determine the appropriate estimation method we

need to use in this context, we first try to establish the autoregressive and volatility

structure of the wave series.

Next, we present the descriptive statistics of each wave with emphasis on its volatility.

We investigate the ARMA and GARCH properties of each wave. We try to determine the

change over time in the strength of correlation between the waves, as well as the Granger

causality estimates for each pair of investigated waves in this study. This information will

be used later on during modeling of the common factor of our waves.

A. Descriptive Statistics of the Waves

We summarize the descriptive statistics of our waves in Figures 2A-E. These figures display

the nonparametric kernel density plot of the natural logarithm of monthly dollar volume of

Divestitures, IPOs, Mergers & Acquisitions, Repurchases, and SEOs. Information about

the kernel plot, such as type of kernel plot, bandwidth, c-value, and approximate mean

integrated square error (AMISE) are shown in the little boxes inside the graph-box. The

sample statistics, such as number of observations, minimum, median, maximum, mean,

standard deviation, skewness, and kurtosis are also displayed in a similar box. A fitted

normal distribution is also graphed to help visualize the actual distribution of the wave

volume against a backdrop of normal distribution with the same mean and variance. In

one of the boxes we also show the results from the tests for normality of these volume

distributions. The test results from Anderson-Darling normality test (Pr > A-Square),

10Some examples of latent factor models used in the presence of autoregressive and GARCH features

are Efficient Method of Moments (EMM) (see Gallant and Tauchen (1996)) or simulated generalized

method of moments (see Lee and Ingram (1991) and Duffie and Singleton (1996)).
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Cramer-von Mises normality test (Pr > W -Square), and Kolmogorov-Smirnov normality

test (Pr > D) are displayed.

Briefly, the wave distributions suggest that the DIV, IPO, REP, and SEO monthly

volume numbers are highly non-normal. M&A wave’s distribution is close to being normal.

Another important observation from these figures, is the differences in variations in each

wave’s volume. The REP wave is the most volatile among the waves with standard

deviation of monthly changes reaching 1.4301, followed by M&A and IPO waves with

standard deviations of 1.1710 and 1.0717, respectively. The SEO and Divestiture waves

are much less volatile both with standard deviations slightly less than 1.

Also, our unreported results show that the Augmented Dickey-Fuller Tests11 and the

Phillips-Perron tests applied to our wave series reject with 5% confidence the null hypoth-

esis of non-stationarity for the series with drift and with drift and time trend. The only

version of this test that we can not reject is when we assume that the mean of our wave

series is zero. Since it is unrealistic (economically speaking), to assume that DIV, IPO,

M&A, REP, and SEO series would have zero activity in a given month, we conclude that

more relevant versions of Augmented Dickey-Fuller test are the tests with drift and/or

with drift and time trend. Thus, as an important characteristics of our wave series, we

establish that they are stationary with non-zero mean and/or with drift, which is essential

for the analyses that will follow. Another implication is that we should not worry about

“spurious regression” results usually seen in nonstationary series (Granger and Newbold

(1974)). Since the waves series are stationary, we did not test for cointegration among

those series.

B. Autoregressive and Heteroskedastic Properties of Each Wave

It is essential for us to establish what are the ARMA and GARCH properties of our wave

series, because we will use these properties later on to create a model of waves. However,

at the current stage of the literature, we have no theoretical arguments suggesting why

the data generating process of the waves should have a certain ARMA and/or certain

11The three unit root (or non-stationarity) tests as suggested by Dickey and Fuller (1979) are conducted

as follows. 1) Zero mean: the equation is ∆wt = (ρ− 1)wt−1 + et; 2) with drift: the equation is ∆wt =

µ0 +(ρ−1)wt−1 +et; and 3) with drift and time trend: the equation is ∆wt = µ0 +µ1t+(ρ−1)wt−1 +et.

For all three versions of the test the null hypothesis is H0:ρ = 1, and the alternative hypothesis is

H1:|ρ| < 1. The critical values for the changed distribution are as suggested by their study.

11



conditional heteroskedasticity features. Thus, we have to rely on statistical inference

obtained from the data.

B.1. ARMA Properties

What are the ARMA properties of our waves? Durbin-Watson tests strongly rejects the

null hypothesis of no autocorrelation (for all the series the p-value for testing positive

autocorrelation is less than 0.01%). Further, we use a combination of Box-Jenkins ap-

proach (ACF and PCF), SCAN and ESCAF approach of Tsay and Tiao (1984, 1985),

and MINIC (minimum Bayesian information criteria) to time series modeling, and we

conclude that our waves are most likely to follow an ARMA process rather than an MA

or an AR process.

Using Box-Jenkins approach we observe that both the autocorrelations and partial au-

tocorrelations tapper off (another confirmation that we are dealing with stationary series).

The autocorrelations are significant for 10 lags and higher, and the partial autocorrela-

tions do fall below the cutoff levels after 4-5 lags. This is an indication that our series

could possibly have a high order AR properties. However, SCAN and ESACF approach

for details of this approach) suggests that all of our series are following low order ARMA

processes of the form ARMA(1,1). To confirm the last result, Bayesian MINIC has its

lowest values at ARMA(1,1) estimation for DIV, M&A, and SEO waves, at ARMA(3,0)

for IPO wave, and at ARMA(5,0) for the REP wave. MINIC for ARMA(1,1) for the

IPO wave and for the REP wave is close second in lowness, so to have some commonality

among the series, which is necessary for us to build the common factor in the latent factor

model, we conclude that ARMA(1,1) is the best fitting time series model for all of our

series.12

To confirm the adequacy of these tentative ARMA models, we estimate the coefficients

of a fitted ARMA(1,1) model for each wave. The results are presented in Table 2. The

estimated coefficients are significant for all of our wave series. Furthermore, the unreported

results for residual analysis does not contradict the above fitted model. Comparisons of

Akaike Information Criterion (AIC) and Schwarz Bayesian Criterion (SBC) of current

and extended models again implies that the most optimal time series model for our series

12The autocorrelation and partial autocorrelation results, smallest canonical correlation (SCAN) and

extended sample autocorrelation function (ESACF) results, and MINIC results used to derive these

conclusions are available upon request.
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is ARMA(1,1).

B.2. GARCH properties

From Figures 2A-E we observe that the distribution of monthly volume levels for all five

waves are non-normally distributed, and some waves have a heavier tails than normal

(large kurtosis values). Furthermore, the differenced values of those waves (i.e. month-

over-month changes in log volume levels) plotted over time show that there is some ev-

idence of volatility clustering (these figures are available upon request). This volatility

clustering in monthly changes is most likely due to unusual activity in the corresponding

DIV, IPO, M&A, REP, and SEO markets in certain overheated periods. All these are

signs of heteroskedastic residuals.

To formally test for presence of ARCH effects we use Lagrange Multiplier (LM) and

Portmenteau Q Tests. For all of our wave series the p-values for both LM and Q tests

(through order 12) are less than 1% (i.e. p-value= 0.0001), which suggests that a very

high-order ARCH model may be needed. However, as Bollerslev (1986) demonstrates,

in situation where many ARCH terms are needed, GARCH model with small number of

terms performs better. Thus, we fit various univariate GARCH(p,q) processes into the

waves data. The estimation results suggest that the most appropriate volatility structure

for DIV, IPO, M&A, REP, and SEO waves is GARCH(1,1). See the estimation results

in Table 3. As an ex-post confirmation of the need for using some form of time-varying

conditional volatility structure, the “persistence measure” calculated as the sum of ARCH

and GARCH parameters is close to 0.9 for all five wave series.

To sum up, our empirical analysis of the data indicates that these wave series have

strong ARCH features, and are best represented by GARCH(1,1) conditional variance

model. Furthermore, the best description of the ARMA features of these series is ARMA(1,1).

We conclude, therefore, that our wave series are quite similar and surprisingly well be-

haved: all are stationary, and show similar ARMA and GARCH properties.

C. Correlation Coefficients Over Time

Next, we try to assess the time-variation in the correlation between each pair of waves.

Such an analysis will tell us whether the interdependence between the waves is changing
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over time. Do the links between waves intensifies or weakens in certain time periods?13

To capture the time variation in the interdependence between waves, we measure the

correlation coefficients between the monthly observations (in log-volumes) of each pair of

waves within a moving window of 36-months. The window moves one month at a time.

As we can see from Figures 4A-L, the correlation coefficients between waves have shown

substantial variation in time.14

The strength and the sign of the correlation coefficients across various wave-pairs is

also very different. For DIV-M&A, DIV-REP, IPO-M&A, M&A-REP, SEO-M&A, and

IPO-SEO waves, for example, it is mostly positive (albeit changing in magnitude over

time). The positive correlation between IPO and SEO waves is expected: the favorable

conditions to issue equity affects both seasoned and new equity in similar way. The DIV-

M&A, DIV-REP, and M&A-REP graphs suggest that the periods of intense M&A activity

coincide with periods of increased divesting and repurchasing activity. Apparently, when

some firms start acquiring businesses, others find this environment to be suitable for

unloading some businesses or for buying back some stock. The synchronization between

IPO, SEO, and M&A series likely increases when the conditions are favorable for equity

issuances. When the stock valuations are high, firms find it suitable to issue equity, and

to use the stock for acquisitions.

However, the correlation coefficients between DIV and IPO, between DIV and SEO,

between IPO and REP, and between SEO and REP can easily swing from positive to

negative and vice-a-versa within a period of couple of years. Notice how the correlation

coefficient between DIV and IPO moves from +0.6 to −0.35 within 24 months period.

Clearly there is an underlying (cyclical) factor that causes these swings. Furthermore,

it is interesting to observe that there are periods when the correlation between equity

issuances and equity repurchases are positive. Obviously, stock market timing can not be

the cause of this relationship. Most likely, at such times, some firms (eg., fast growing

ones) needed to raise equity capital for investment, and other firms (eg., firms in maturing

industries) had extra capital to buy back equity.

Furthermore, during certain periods we observe the positive correlation between cer-

tain pairs of waves (for example, between divestitures and equity issuances (IPOs and

13Even though this paper does not necessarily fully address them, the natural follow up questions would

be ”Why it changes over time?”, “Are there factors that can account for these fluctuations?”, etc.
14We start the period in 1984, because between 1981 and 1983 we have less than 36 months of obser-

vations.
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SEOs) from 1989 to 1990)) to be very high. This can be referred as a high “contagion”

period between divestitures and issuances. Intensity in one wave is spreading to the other

one. While this suggests existence of an interesting dynamic between these two waves,

analyzing it in further details is beyond the scope of this study.

For the purposes of this paper, however, the most important benefit from analyzing

these graphs is to obtain an indirect evidence of the presence of an underlying common

factor driving all the waves. This factor is likely causing the variation in the degree of

correlation between the waves. In some periods, when the underlying common factor is

strong, the waves move in the same direction (an thus are positively correlated). In other

times, when the common factor’s presence is not so strong, the waves move in their own

way without high synchronization.

D. Lead-Lag Relationship Between Waves: Granger Causality

Using Granger causality concept we try to determine the lead-lag relationship (or the

causation) between the waves. Namely, we want to know whether among a given pair

of waves there is one that has some triggering effect on the other one? Does the past

observations of one wave has a predictive power on the current values of the other one

(Granger causality)?

To test whether wave wi leads wave wj, the following reduced form regression for up

to two lags15 is estimated:

wi,t = π0 + π1wi,t−1 + π2wj,t−1 + π3wi,t−2 + π4wj,t−2 + ξi,t (1)

A wave wj is said to Granger cause wave wi, if π2 6= 0 or π4 6= 0.

To test for reverse Granger causality of wave wi on wave wj we estimate a similar

dynamic equation:

wj,t = η0 + η1wj,t−1 + η2wi,t−1 + η3wj,t−2 + η4wi,t−2 + ξj,t (2)

Thus, the null hypothesis of wave wi not Granger causing wave wj is tested by checking

the significances of the coefficients η2 and η4 (i.e., H0 : η2 = 0 and η4 = 0.)

15We considered higher order lags, but we found that they are insignificant for most pairs of waves

considered.
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The results for estimating the above equations are presented in Table 416. We present

only the relevant coefficients, their p-values, and Wald (p-values) for presence of Granger

causality effects. The null hypothesis for Wald test is that there is no Granger causality

between given pair of waves. The coefficients’ significance and Wald test results show

that three clear and highly significant bivariate causality relationships emerge: 1) SEO

wave seems to Granger cause (or trigger) IPO wave, but the reverse is not true; 2) SEO

wave also Granger causes M&A wave, but again the opposite is not true; 3) M&A wave

seems to Granger cause IPO wave; reverse is not true; 4) M&A wave leads Divestitures

wave; the reverse Granger causation is significant only for the second lag if DIV; and

5) DIV seems to ignite REP, and REP has lesser causation affect on DIV. The Granger

causality tests for all the other pairs of waves is insignificant and thus, inconclusive about

the possible lead-lag effects between these waves.

The above three significant Granger causality results are quite interesting and open

for more detailed investigation. One interpretation is that apparently SEO market serves

as a trigger to both IPO and M&A markets. It is first to become active and it leads the

other two. The rise in SEO issuance volume (Granger) causes M&A and IPO volume to

rise (estimated coefficients are positive and significant). The relationship between M&A

and SEO markets can be explained by the heavy use of equity (issuance of seasoned

equity) in many acquisitions. The trigger effect that SEO market has on IPO market is

surprising, though. It suggests that the first group of companies that are taking advantage

of improving economic conditions and rising stock prices is the seasoned companies as

opposed to new and incoming firms i.e., current public companies are the first to ignite

equity capital raising spree and IPOs follow one month behind (one lagged coefficient π2

for Eqn. 1 between IPO and SEO waves is positive and significant).

Another interesting relationship that arises from the above results is between diver-

sification (Mergers & Acquisitions) and refocusing activities (Divestitures) of the firms.

The Granger causality results suggest that M&A wave is first to heat up, and then di-

vestiture activity starts to rise (the corresponding coefficient is positive and significant).

Considering that in many cases divestitures are actually an acquisition activity by an-

16Similar dynamic equations are used to test for bivariate Granger causality (or linkages) between

currency and equity markets in a study by Granger, et al. (2002). For robustness check we also test

for Granger causality using more traditional methods such as vector autoregression (VAR) and found

the coefficient significances to be the same for all pairs of waves. The Wald test results we present are

obtained from estimating the VAR equation.

16



other firm, it is not that surprising that many would-be divesting parent firms are waiting

before M&A market heats up before they divest their unit(s). There is also an evidence

of Divestitures wave Granger causing M&A wave with the second lag, which means that

after the divestiture activity is ignited by M&As, it feeds back and causes M&A activity

to increase even more. That is, DIV and M&A waves seem to feed off of each other.

Similar feedback effects exist between DIV and REP waves. While the first lag effect

is significant only for DIV Granger causing REP, the second lag effects are significant in

both causality regressions.

V. A Model of Interdependence Among Waves: A

Factor Model with ARMA-ARCH Properties

Next, we develop a latent factor model of wave fluctuations of the type that is commonly

used in the asset pricing literature (see Cochrane (1994), Campbell and Shiller (1987,

1988)), and Lee (1996), among others) and in the international contagion literature (see,

for example, Bekaert and Hodrick (1992), King, et al. (1994), Dungey, et al. (2000), and

Forbes and Rigobon (2002)). The use of factor models in the corporate finance literature

has been limited, however. So, below we show that they can be an excellent technique to

analyze two or more aggregated corporate data series.

A. Why Latent Factor Model?

Among many alternatives, latent factor models are the most suitable, because they have

three distinct advantages. First, they circumvent the need to choose specific indicators

to proxy economic variables affecting the waves. Unfortunately, from the pure theoretical

perspective, we do not yet know the causes of wave-like behavior in DIV, IPOs, M&As,

REP, and SEOs. Thus, in any estimation we can not be sure that we can account for all

the right-hand side explanatory factors.

Second, any theoretically relevant factor may not be easily measurable or may be cal-

culated with significant measurement error, which in many instances leads to misleading

estimation results. Typical example of such discrepancy between a theoretical concept

and its “best” known proxy is Tobin’s q. Erickson and Whited (2002) show that the best

known measures of Tobin’s q typically cary with them a large measurement error, which
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Table 1: Testing: The Factor Model

Log Likelihood D.F. Statistic P-Value

-1.54 6 377.45 0.00

Test results for the appropriateness of the factor model. The null hypothesis is the zero-factor

model.

leads to misleading investment-q regression estimation results.

Finally, various econometric issues arise in situations where proxy variables are used.

Endogeneity or missing variables problem can contaminate the estimation results. Besides

the large econometric theory literature on the issue, there are many examples where

various authors show how in specific empirical estimation context endogeneity between the

proxy variables could lead to faulty economic conclusions, if in the estimated econometric

model it is not properly treated for (for recent examples see Villalonga (2004) and Colak

and Whited (2007)).

B. Preliminary Analysis

Before we proceed with our factor model, we first need to test whether factor modeling

would be a good approach for analyzing the data. Applying the test due to Bartlett (1954),

we check if a factor model is a good fit to the data. The results from this likelihood ratio

test are provided in Table 1. They indicate that the factor model is highly preferred

against a non-factor model. Another issue is determining the number of factors that

should be employed in the model. Applying the method proposed by Bai and Ng (2002),

we end up with one factor model. The number of factors should be less than (N − 1)/2

where N is the size of the cross-sectional data. In our case N = 5, because we have

five time series. Therefore, we should use one factor model in analyzing the common

dynamics.

C. The Factor Model

The statistical properties of the wave series identified in the previous section are key in

determining the appropriate estimation model we use in this section. All wave series

display ARMA(1,1) and univariate ARCH (1) properties, and thus it seems like these
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ARMA and ARCH structures are common across all waves. In light of these observations

we model these series by using a common (latent) factor structure, whose dynamics are

specified as ARMA(1,1) and ARCH(1).

Specifically, we develop a Bayesian method for the estimation of a factor model with

ARMA-ARCH properties. The Bayesian estimation of a factor model with AR process is

proposed by Otrok and Whiteman (1998), the Bayesian estimation of a regression with

ARMA process is considered by Chib (1995), and the Bayesian estimation of a regression

is developed by Nakatsuma (2000); however the Bayesian estimation of a factor model

with ARMA-ARCH properties (or for that matter, ARMA-GARCH properties) is missing

in the literature. So, the estimation we propose is unique in the sense that it is developed

here for the first time in the literature. Our Biasian method essentially applies a hybrid

method for the Markov Chain Monte Carlo (MCMC) method. That is, to generate a

Monte Carlo sample from the joint posterior distribution, we employ a Markov chain

sampling with Gibbs and Metropolis-Hastings algorithm together.

The MCMC method is a Monte Carlo integration method to generate samples of pa-

rameters of the model from their joint posterior distribution by Markov Chain sampling.

These samples are used to compute multiple complicated integrals by Monte Carlo inte-

gration, a popular procedure in many recently developed Bayesian methods. The Gibbs

algorithm and the Metropolis-Hastings algorithm are two widely used Markov chain sam-

pling schemes in the literature. Since direct sampling from the posterior distributions of

our model parameters is not possible, we employ these two powerful Markov chain algo-

rithms in our Bayesian method for the estimation of the factor model with ARMA-ARCH

processes.

Now, we begin the detailed description of the model with the evolution of our five

waves as a dynamic factor structure. Let wt be the N × 1 vector of observed time series,

generated by a set of r unobserved common factors. Then each component of the vector of

observed wave series, wt, can be written as a linear combination of these common factors:

wt = µ+ Λft + εt (3)

where µ is N ×1 vector of deterministic coefficients, Λ is N × r matrix of factor loadings,

ft is r × 1 vector of factors and εt is N × 1 vector of idiosyncratic components.

In some instances, for the sake of simplicity, the latent factors are assumed to be a

latent stochastic process with zero mean and unit variance ft ∼ iid(0,1) or ft = ft−1 + εt,

where εt is a stationary and independent disturbance term. However, in our case this
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factor modeling would be unrealistic. We are dealing with waves that are measured as

logarithm of monthly dollar volume i.e., the mean is not zero; and as previously docu-

mented, our waves show strong ARMA and ARCH properties. Thus, the evolution of

each factor, j = 1, ..., r, is governed by an autoregression of order p and moving average

of order q:

fjt = bj0 +

p∑
s=1

bjsfj,t−s +

q∑
s=1

cjsej,t−s + ejt (4)

where roots of (1−
∑p

s=1 bsL
s) = 0 lie outside the unit circle.

Idiosyncratic errors in Eqn. 3 are all assumed to be normally distributed:

εt
i.i.d.∼ N(0,D) (5)

where D = diag(d1, ..., dN). However, the heteroskedastic variance properties are captured

by the factor innovations. That is, the ARCH effects are defined as

ejt ∼ N(0, σ2
jt) (6)

σ2
jt = αj0 +

k∑
s=1

αjse
2
j,t−s. (7)

where the ARCH model coefficients have to satisfy the condition that αj � 0 where

αj = (αj0, αj1, ..., αjk)
′. Moreover, εt and ejt are mutually uncorrelated for all t.

In practice, we impose at least two sets of important constraints on parameters in the

ARMA-ARCH model. First set of constraints is about the ARMA parameters:

1. All roots of (1−
∑p

s=1 bjsL
s) = 0 lie outside the unit circle.

2. All roots of (1−
∑q

s=1 cjsL
s) = 0 lie outside the unit circle.

These two constraints are imposed to ensure the stationarity and invertibility of the

ARMA process. The second set of constraints are about the ARCH parameters:

1. For all s = 0, 1, ..., k : αs > 0.

This guarantees that the conditional variance σ2
jt is always positive.

The ARCH(k) structure can also be written as an AR(p) model in the following form

e2
jt = αj0 +

k∑
s=1

αjse
2
j,t−s + ωjt (8)

which is proposed by Bollerslev (1986). Here we set ωjt = e2
jt − σ2

jt. Notice that ωjt =

(
e2jt
σ2
jt
−1)σ2

jt. So ωjt = (χ2(1)−1)σ2
jt is a χ2(1) distribution multiplied by σ2

jt, and therefore,
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E(ωjt) = 0 and V ar(ωjt) = 2σ4
jt. We apply a normal approximation as in Nakatsuma

(2000). Therefore,

ωjt ∼ N(0, 2σ4
jt). (9)

D. Estimating the Factors and the Parameters

The above latent factor model can not be estimated with GMM or Kalman filter because

of the presence of heteroskedastic conditional variances. Maximum likelihood estimation

also requires that some expectations to be replaced by their approximations. Thus, we

intend to use Bayesian estimation because of its applicability and flexibility. Bayesian

inference requires us to compute the posterior distributions for model parameters. In this

section, we just provide a summary of the estimation method. We apply a Markov Chain

Monte Carlo (MCMC) method, more specifically the Metropolis within Gibbs sampling

method, for the estimation of the factors and model parameters. Here is how it is processed

step-by-step:

1. Simulate the common factors from a normal posterior distribution (Kalman filter is

applied).

2. Draw the factor loadings from a normal posterior.

3. Draw the variances of idiosyncratic factors from inverted gamma distributions.

4. Draw the factor autoregressive coefficients from a normal posterior.

5. Draw the factor moving average coefficients using Metropolis-Hastings algorithm.

6. Draw the ARCH parameters from a normal posterior.

7. Draw the ARCH coefficients using Metropolis-Hastings algorithm.

More details about the estimation are available in the appendix. We use Metropolis-

Hastings algorithm in the steps (5) and (7) to draw the parameters from conditional

posteriors, because the derivation of the closed form posterior distribution is quite difficult

to achieve.

E. Estimation Results

Following the above procedure, we obtain the estimates of our common factor and the

coefficients shown in Eqn. 3. The most important result for us from this estimation is

the time series of the common factor that drives our waves. Figure 4 plots this common

factor over time. Notice the secular upward trend in this factor. Since our aggregate
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dollar volumes were already converted to year 2000 dollars, we believe this trend reflects

the genuine rise in the volume of corporate events as the U.S. economy and the U.S.

markets are growing.

We estimate that the average month-over-month growth of this common factor is about

0.12% during the sampling period. There are two major incidences where this factor has

declined steadily: between 1988:09 and 1991:02 it declined 10% from top to bottom (or,

on average, 0.35% per month), and between 2000:02 and 2003:02 the same decline was

10.73% (on average, 0.31% per month).

There are also three major bottoms that are visible in the graph of our systematic

factor: in the early 1980s, the early 1990s, and the early 2000s. All three of these troughs

are separated by a decade, and all of them coincide with a major economic recession (as

defined by NBER). It is interesting to note also that, major stock market drops that are

not associated with an economic recession have a minimal effect on the common factor.

For example, the October, 1987 crash (when the S&P 500 dropped around 25%) and the

September-October, 1998 decline due to the LTCM debacle (when the S&P 500 dropped

almost ) are just a blip in the overall trend of the common factor. This lead us to conclude

that these events do not seem to have a permanent effect on the common factor and on

the corporate wave series.

In another result, we estimate the percentage of our wave series that are explained by

our systematic factor. Such an analysis will tell us which of our waves have a big wave-

specific component i.e., it is driven by our systematic factor to a lesser extend. It turns

out that divestitures and repurchases are the corporate events that have high percentage

of their series formed by our common factor (67.50% and 65.10%, correspondingly). The

equity issuances (IPOs and SEOs) and the M&As have less than 50% of their values

explained by the systematic factor (3.54%, 16.75%, and 46.19%, correspondingly).

E.1. The Common Factor and the Macroeconomic Variables

Next, we consider several macroeconomic variables and try to determine which of those

variables could have played a major role in forming the common factor. The variables

we consider are: industrial production (i.e. aggregate output), M1 money supply, 90-day

T-bill rate (short-term rates), 10-year T-bond yield (long-term rates), euro-dollar parity

(exchange rates), S&P 500 index (stock market), and consumer price index (CPI).

We find that among these variables, the ones that have the highest significant positive
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correlation with our common factor are the industrial production (correlation=+0.8563)

and the S&P 500 stock index (correlation=+0.8337). The common factor and the long-

term interest rates are significantly negatively correlated (correlation=-0.8393). These

three macro-variables seem to have the closest relationship to our common factor.

These results suggest that the most likely cause of the cyclicality in our corporate

waves is the underlying macro factors that define the business cycle. We document that

the aggregate output, the stock market levels, and the long-term interest rates are the

variables that are most closely related to our estimated systematic factor, which means

that the business cycle is the most important cause of the genuine cyclical movements in

the corporate event waves.

In the previous subsection, we also found that, while all the waves are affected by the

common factor (or the business cycle), the magnitude of the effect varies from wave to

wave. Therefore, we conclude that among the five waves we analyze, the divestitures and

the repurchases waves seem to be affected the most from the business cycles (more than

65%). The cyclicality in the IPO and SEO waves seem to be driven to a lesser extend by

this common factor, which suggest that these waves are affected by other, more numerous,

factors beyond just the business cycle.

VI. Conclusion

For the first time in the literature we show that there are common and wave-specific factors

that form the waves of the five different corporate events: DIVs, IPOs, M&As, REP, and

SEOs. To extract the common factor we develop and estimate a novel Bayesian factor

analysis model. This approach extracts a common factor with ARMA (1,1) and ARCH

(1) features from several time series. With this methodology we are able to determine

what percentage of each wave is driven by the common factor and what percentage by

the idiosyncratic factors. Having this common factor in hand, we then determine which

economic and/or market variables are most closely related to it. It turns out that the

industrial production, the stock market, and the interest rates are the variables most

associated with this factor.

We also report on these waves’ statistical and time-series properties: their volatility

and stationarity, the Granger causalities between them, and the time-variation in the

correlation coefficients between them.
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The study does not attempt to find all the economic factors that cause the fluctuations

in the waves, nor does it attempt to determine what specifically are the channels through

which the waves influence each other (i.e. channels of contagion). However, we believe

that developing the framework for empirically analyzing these waves’ time-series is the

best foundation for the future research in the field.

There is a need for future research that would analyze a plethora of macro variables

to determine the lead-lag relationship between the factor and these macro variables. Such

an analysis can pinpoint which macro variables can serve as leading indicators to major

changes in this common factor, which in return would cause significant fluctuations in the

volume of these corporate events.

A different follow up analyzes could try to understand why in certain period common-

alities between the waves is rising and during other times the waves are less integrated.

Why some waves are affected differently from the common factor, i.e. why some waves

have higher/lower percentage determined by the common factor?

Finally, a future work could concentrate on developing different methodologies to

extract the common factor. Better macroeconomic proxies of the common factor can be

proposed. Pairwise analysis of the waves, M&A vs. DIV or equity issues vs. equity

repurchases, could yield new and interesting conclusions, also.
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Appendix

We derive the posterior distributions and give the details of the MCMC sampling
procedure.

The kernel of the posterior p.d.f. p(D,Λ,F,B|W) is proportional to the full joint
distribution which is the multiplication of the prior densities and the observables density:

p(D,Λ,F,B|W) ∝ p(D)p(Λ)p(F|B)p(B)p(W|D,Λ,F) (10)

The full joint distribution is expressed as:

p(W,F,D,Λ) = p(Λ)p(D)p(F)p(W|Λ,D,F)

= (2π)−TN/2|D|−
T
2 .exp{−1

2

T∑
t=1

(wt −Λft)
′D−1(wt −Λft)}

×
r∏
j=1

T∏
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(2πσ2
t )
−1/2exp{− 1

2σ2
t

(fjt − bj0 − bj1
t∑

s=1

(−cj1)s−1fj,t−s +
t∑

s=1

(−cj1)sfj,t−s)
2}

×
T∏
t=1

(2πσ2
t )
−1/2exp{− 1

2σ2
t

(e2
jt − αj0 −

k∑
s=1

αjse
2
j,t−s)

2}
k∏
i=0

I(0,∞)(αji)

× (2π)−[r(2N+1−r)/2]/2|Hλ|1/2exp{−
1

2
(λ− λ)′Hλ(λ− λ)}

r∏
i=1

I[0,∞)(λii)

× 2
∑N
i=2 νi/2exp{−

N∑
i=1

s2
i /(2di)}

N∏
i=1

[Γ(νi/2)]−1(si)
νi/2(di)

−(νi+2)/2

×
r∏
j=1

(2π)−(p+1)/2|HB|1/2exp{−
1

2
(Bj −B)′Hj(Bj −B)}I[s(Bj)]

×
r∏
j=1

(2π)−(k+1)/2|HA|1/2exp{−
1

2
(Aj −A)′HA(Aj −A)}

k∏
i=0

I(0,∞)(αji)

× (2π)−1/2|he|1/2exp{−
he
2

(ej0 − e0)2}

where Aj = {αjs}ks=0, Bj = {bjs}ps=0 and I[s(Bj)] is an indicator function used to denote
roots of (1−

∑p
s=1 bjsL

s) = 0 that lie outside the unit circle. We solve out the following
conditional posteriors from the kernel of the full joint distribution for simulation purposes
in MCMC sampling.

A couple of remarks follow about the MCMC derivations. First, we demean the data;
hence we set µ = 0. Second, defining Θ = {Λ,D,F,B}, for notational simplicity we let
Θ−θ denote the set Θ minus θ, where θ ∈ {Λ,D,F,B}.

Simulating the Model Parameters
To stick with the waves results in this study, we take the ARMA(1,1) case in the
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following derivations and analysis. If we assume that p = 1 and q = 1, then

ejt = fjt − bj0 − bj1
t∑

s=1

(−cj1)s−1fj,t−s +
t∑

s=1

(−cj1)sfj,t−s (11)

for which it is worth noting that fj0 = ej0. From this expression, we can deduce the
posterior densities of AR and MA coefficients as well as the posterior simulation of the
initial error term ej0.

AR coefficients: We can rewrite this expression

ejt = yjt − bj0 − bj1xjt (12)

where yjt = fjt +
∑t

s=1(−cj1)sfj,t−s and xjt =
∑t

s=1(−cj1)s−1fj,t−s. We know that ejt ∼
N(0, σ2

t ). Therefore the kernel of p(B|W,Θ−B) :

×
r∏
j=1

exp{− 1

2σ2
t

T∑
t=1

(yjt − bj0 − bj1xjt)2}

×
r∏
j=1

exp{−1

2
(Bj −B)′HA(Bj −B)}I[s(Bj)]

We assume Bj = (bj0, bj1)′. The conditional posterior of Bj for j = 1, ..., r is a multivariate
normal distribution

Bj ∼ N(Bj,H
−1

j )I[s(Bj)] j = 1, . . . , r (13)

where
B = (HB + X′X)−1(HBB + X′Y)

H
−1

B = (HB + X′X)−1

where Y is the T × 1 vector of yjt’s and X is the T × 2 matrix of 1’s and xjt’s.
MA coefficients: Again, we can rewrite this equation as in the following form

ejt = gt(cj1) + ht(cj1) (14)

where gt(cj1) = fjt−cj1fj,t−1 and ht(cj1) = −bj0−bj1
∑t

s=1(−cj1)s−1fj,t−s+
∑t

s=2(−cj1)sfj,t−s.
Since ejt ∼ N(0, σ2

t ), the kernel of this normal distribution as a function of MA coefficients
cj1 is exp{− 1

2σ2
t
(gt(cj1) + ht(cj1))2} = A(cj1)B(cj1) where A(cj1) = exp{− 1

2σ2
t
g2
t (cj1} and

B(cj1) = exp{− 1
2σ2
t
(2gt(cj1)ht(cj1)+h2

t (cj1))}. Then a natural candidate proposal density

for Metropolis-Hastings algorithm is Q(cj1) = A(cj1) which is a normal density. Also
the target density is P (cj1) = A(cj1)B(cj1). Therefore, now the accept-reject function
(probability of move) α is quite simple to compute:

α =
P (cm+1

j1 )Q(cmj1|cm+1
j1 )

P (cmj1)Q(cm+1
j1 |cmj1)

=
B(cm+1

j1 )

B(cmj1)
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Pre-sampling error: We can put the above expression in the following form:

ejt = fjt − bj0 − bj1
t−1∑
s=1

(−cj1)s−1fj,t−s +
t−1∑
s=1

(−cj1)sfj,t−s − bj1(−cj1)t−1fj0 + (−cj1)tfj0

which finally simplifies as
ejt = ỹjt − x̃jtej0 (15)

where ỹjt = fjt − bj0 −
∑t−1

s=1(−cj1)s−1[bj1 + cj1]fj,t−s, x̃t = [bj1(−cj1)t−1 − (−cj1)t] and
since fj0 = ej0. Hence the posterior density of the pre-sampling error is

ej0 ∼ N(e0, h
−1

e ) j = 1, . . . , r (16)

where
ej0 = he + X̃

′
X̃)−1(hee0 + X̃

′
Ỹ)
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e = (he + X̃
′
X̃)−1

where Ỹ is the T × 1 vector of ỹjt’s and X̃ is the T × 1 vector of x̃jt’s.
ARCH coefficients: The kernel of p(A|W,Θ−A) :
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2
(Aj −A)′HA(Aj −A)}
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i=0

I(0,∞)(αji)

We assume Aj = (αj0, αj1)′. The conditional posterior of Aj for j = 1, ..., r is a multi-
variate normal distribution

Aj ∼ N(A,H
−1

A )I[s(Aj)] j = 1, . . . , r (17)

where
A = (HA + X̂

′
X̂)−1(HAA + X̂

′
Ŷ)

H
−1

A = (HA + X̂
′
X̂)−1

where Ŷ is the T × 1 vector of e2
jt’s and X̂ is the T × 2 matrix of 1’s and e2

jt−1’s.
Variance-covariance of the idiosyncratic factors: Kernel of p(D|W,Θ−D) :
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where wit is the ith element of the vector wt and Λi is the ith row of the matrix Λ. So,∑T

t=1(wit−Λift)
2+s2i

di
∼ χ2(νi + T ). Thus, di’s are inverted independent gamma distribution.
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Factor loadings: Kernel of p(Λ|W,Θ−Λ) :
exp{−1

2
(λ− λ)′Hλ(λ− λ)}.

∏
I[0,∞)(λii)

×exp{−1
2

∑T
t=1(wt −Λft)

′D−1(wt −Λft)}
We have got two additional notations we need to explain before we continue to the pos-
terior of Λ. Let Fi be the matrix consisting of the first i columns of F for i = 1, . . . , r
and Fi = F for i = r + 1, . . . , N . Let F∗ = diag(F1, . . . ,FN)′. The conditional posterior
of Λ is a multivariate normal distribution

Λ/(W,D,F) v N(λ,H
−1

Λ ) (18)

where
HΛ = HΛ + F∗

′
(D⊗ IT )−1F∗

λ = H
−1

Λ [HΛ.λ+ F∗
′
(D⊗ IT )−1W]

with a truncation of the elements λii’s, i = 1 . . . r, below at 0.

Simulating the Latent Factors

We can rewrite the model and the factor dynamics in the following state space struc-
ture

wt = HFt + εt (19)

where H =

(
λ11 λ22 λ33 λ44 λ55

0 0 0 0 0

)′
and Ft =

(
ft
et

)
.

The evolution of the state vector is

Ft = B0 + B1Ft−1 + Et (20)

where B0 =

(
b0

0

)
, B =

(
b1 c1

0 0

)
and Et =

(
1
1

)
et Finally, the roots of (1−

∑p
s=1 bsL

s) =

0 lie outside the unit circle. Note that V ar(Et) = σ2
t ι4 where ι4 is a 4× 4 matrix of ones.

Now we explain the simulation of latent factors (state variables in the model) with the
use of Gibbs sampler. We employ Carter and Kohn (1994)’s Gibbs sampling approach
for its computational efficiency and faster convergence. The step of the Gibbs sampler in
which we generate F is given by:
p(F|W,Θ−F)
= p(fT |W,Θ−F)

∏T−1
t=1 p(ft|W,Θ−F, ft+1, ..., fT )

= p(fT |W,Θ−F)
∏T−1

t=1 p(ft|W,Θ−F, ft+1)
The last line follows from the Markov property of ft.

Because the model is linear and Gaussian, the distribution of fT given W and Θ−F,
and that of ft given W, Θ−F and ft+1 for t = 1, ..., T are also Gaussian:

fT |W,Θ−F ∼ N(fT |T ,PT |T ) (21)

ft|W,Θ−F, ft+1 ∼ N(ft|t,ft+1 ,Pt|t,ft+1) (22)
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where
fT |T = E(fT |W)

PT |T = Cov(fT |W)

ft|t,ft+1 = E(fT |W, ft+1)

Pt|t,ft+1 = Cov(fT |W, ft+1)

Computation of fT |T , PT |T , ft|t,ft+1 and Pt|t,ft+1 :

How can we compute these means and covariances, fT |T , PT |T , ft|t,ft+1 and Pt|t,ft+1 for
t = T − 1, T − 2, ..., 1? We can take the advantage of Gaussian Kalman filter to obtain
fT |T , PT |T , ft|t,ft+1 and Pt|t,ft+1 for t = T − 1, T − 2, ..., 1. Since the last iteration of the
updating step of the Kalman filter procedure (which will be explained soon) provides us
with fT |T and PT |T , it is straightforward to generate fT from (21). Then, as shown by
Carter and Kohn (1994) and Kim and Nelson (2000), ft|t,ft+1 and Pt|t,ft+1 can be computed
by using the following updating equations:

ft|t,ft+1 = ft|t + Pt|tB
′
1(B1Pt|tB

′
1 + σ2

t )
−1(ft+1 −B0 −B1ft|t) (23)

Pt|t,ft+1 = Pt|t −Pt|tB
′
1(B1Pt|tB

′
1 + σ2

t )
−1B1Pt|t (24)

Once ft|t,ft+1 and Pt|t,ft+1 are derived in this way, generating ft from (22) is straightforward.
However, we still do not know ft|t and Pt|t. We employ the Kalman filter procedure to de-
rive ft|t and Pt|t (see section 3.2 in Kim and Nelson (2000) for further discussions). Given
the initial values f0|0 and P0|0, the following prediction and updating equations should be
applied recursively to compute ft|t and Pt|t.
Prediction procedure of the Kalman filter:

ft|t−1 = B0 + B1ft−1|t−1

Pt|t−1 = B1Pt−1|t−1B
′
1 + σ2

t

ηt|t−1 = wt −wt|t−1 = wt −Hft|t−1

gt|t−1 = HPt−1|t−1H
′ + D

Updating procedure of the Kalman filter:

ft|t = ft|t−1 + Ktηt|t−1

Pt|t = Pt|t−1 −KtHPt|t−1

where Kt = Pt|t−1H
′g−1
t|t−1 is the Kalman gain. However, there is one more complication

of the estimation we need to solve. What initial values, f0|0 and P0|0, should we employ?
Since ft is stationary, we employ the unconditional mean and covariance matrix of ft as
the initial values, f0|0 and P0|0. The unconditional mean of stationary ft can be derived
as

E[ft] = B0 + B1E[ft−1] + E[et]
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f0|0 = B0 + B1f0|0 (At Steady State)

f0|0 = (Ir −B1)−1B0

The unconditional covariance matrix of stationary ft can be derived as

Cov(ft) = B1Cov(ft−1)B′1 + Cov(et)

P0|0 = B1P0|0B
′
1 + σ2

t (At Steady State)

vec(P0|0) = vec(B1P0|0B
′
1) + vec(σ2

t )

vec(P0|0) = (B1 ⊗B1)vec(P0|0) + vec(σ2
t )

vec(P0|0) = (Ir2 −B1 ⊗B1)−1vec(σ2
t )

since vec(ABC) = (C′ ⊗A)vec(B).
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Figure 1: The Wave Measures Over Time

The figure shows the plots of the five corporate waves analyzed in this paper. The time series

of each event wave is measured as the log of its aggregated dollar volume (in year 2000 dollars)

per month. The considered five corporate events are Divestitures (DIV), Initial Public Offerings

(IPO), Mergers&Acquisitions (MA), Equity Repurchases (REP), and Seasoned Equity Offerings

(SEO). The time period is between 1981:01 and 2007:12.
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Figure 2: Descriptive Statistics of the Waves

The figure displays the nonparametric kernel density plots for the five event waves (DIV, IPO,

MA, REP, and SEO waves). Type of kernel plot, bandwidth, c-value, and approximate mean

integrated square error (AMISE) are shown in a little box on the graph. The same box also shows

the results from three tests for normality of the distributions (the Anderson-Darling (Pr > A-

Square), the Cramer-von Mises (Pr > W -Square), and the Kolmogorov-Smirnov (Pr > D)).

The sample statistics, such as minimum, median, maximum, mean, variance, skewness, kurtosis,

and number of firms for each heat sample are also displayed in a separate box. Dotted graph

shows the fitted normal distribution with the same mean and variance as the actual distribution.

38



39



Figure 3: Correlation Coefficients Over Time

Figures 3A-L show the time variation in the correlation coefficients over time for each pair

of waves. The correlation coefficients are estimated using a 36-month moving window of the

monthly data observations of our event time-series (the window shifts one month at a time).

The analyzed waves are DIV, IPO, MA, REP, and SEO waves, and are calculated as described

earlier. The time period is between 1981:01 and 2007:12.
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Figure 4: The Common Factor Over Time

This figure plots the estimated common factor of the waves between 1981:01 and 2007:12. The

time series of the corporate events are measured in aggregated dollar volume (in year 2000

dollars) per month. The considered five corporate event series are Divestitures (DIV), Initial

Public Offerings (IPO), Mergers&Acquisitions (MA), Equity Repurchases (REP), and Seasoned

Equity Offerings (SEO). The factor is extracted using the Bayesian methodology we develop and

describe in the text.
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Table 2: Fitting an ARMA(p, q) Model to the Wave Series

This table presents the results from estimating autoregressive moving average (ARMA) mod-

els for DIV, IPO, M&A, REP, and SEO waves. The wave variables measured as natural

logarithm of volume levels (in year 2000 dollars) are LogVolDIV, LogVolIPO, LogVolMA,

LogVolREP, and LogVolSEO. The estimated ARMA(1,1) model is of the form wt = ψ0 +

θ1wt−1 + εt + γ1εt−1. The number in parantheses under the coefficient estimate represent the

p-value of the null hypothesis of zero coefficient estimate. MINIC is the Minimum Bayesian

Information Criterion used in selecting the appropriate ARMA model. AIC and SBC are

Akaike Information Criterion and Schwarz Bayesian Criterion, respectively.

LogVolDIV LogVolIPO LogVolMA LogVolREP LogVolSEO

ψ0 22.4397 20.7618 22.8744 19.1527 21.6750

(p-value) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

θ1 0.9817 0.9156 0.9871 0.9997 0.8978

(p-value) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

γ1 0.7117 0.5480 0.7392 0.7317 0.4037

(p-value) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

AIC 518.1445 765.9897 738.7720 777.0423 648.5087

SBC 529.4868 777.2853 750.1142 788.3845 659.8509

MINIC -1.5229 -0.4368 -0.5599 -0.6112 -0.8508

Monthly Obs. 324 319 324 324 324
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Table 3: Fitting a GARCH(p, q) Model to the Wave Series

This table presents the results from estimating autoregressive conditional heteroscedastic-

ity (GARCH(1, 1)) model for DIV, IPO, M&A, REP, and SEO waves. The wave vari-

ables measured as natural logarithm of volume levels (in year 2000 dollars) are LogVolDIV,

LogVolIPO, LogVolMA, LogVolREP, and LogVolSEO. The formal description of the es-

timated GARCH(1, 1) equations is presented in the text. The number in parantheses

under the coefficient estimate represent the p-value of the null hypothesis of zero coefficient

estimate. AIC, SBC, and LogL are Akaike Information Criterion, Schwarz Bayesian Crite-

rion, and Log Likelihood Function, respectively. The parameters are estimated assuming

t-distribution for the residuals.
LogVolDIV LogVolIPO LogVolMA LogVolREP LogVolSEO

Intercept 23.3228 21.2678 23.1997 22.6452 22.0903

(p-value) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

ARCH0 0.0368 0.2594 0.0630 0.0493 0.1846

(p-value) (0.0967) (0.0025) (0.1356) (0.1448) (0.0002)

ARCH1 0.2030 0.6456 0.1813 0.2248 0.6553

(p-value) (0.0001) (0.0003) (0.0001) (0.0003) (0.0001)

GARCH1 0.7418 0.2777 0.7700 0.7488 0.2053

(p-value) (0.0001) (0.0247) (0.0001) (0.0001) (0.0471)

LogL -176.9007 -261.0358 -294.7743 -297.8122 -214.0594

AIC 361.8014 532.0717 597.5486 603.6245 436.1188

SBC 376.9243 550.8976 612.6715 618.7474 451.2418
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Table 4: Granger Causality Tests

Granger causality estimation and test results are presented in this table. The waves are measured as natural logarithm of the

corresponding volume levels (in year 2000 dollars): LogVolDIV, LogVolIPO, LogVolMA, LogVolREP, and LogVolSEO. The

estimated equations are Eqn 1: wi,t = π0 + π1wi,t−1 + π2wj,t−1 + π3wi,t−2 + π4wj,t−2 + ξi,t and Eqn 2: wj,t = η0 + η1wj,t−1 +

η2wi,t−1 + η3wj,t−2 + η4wi,t−2 + ξj,t. The waves are grouped in pairs (wi,wj). The first equation is used to test for wave wj
Granger causing wave wi and second equation is used to test for the reverse causation. The null hypothesis of no Granger

causality for Eqn. 1 is H0 : π2 = 0, π4 = 0; and for Eqn. 2 is H0 : η2 = 0, η4 = 0. The numbers in parantheses under the the

coefficient estimates are the corresponding p-values. Wald test results from a VAR estimation is also reported as official test of

the null of wave wj not Granger causing wave wi. “*” indicates significance at 5% level.

wi=DIV wi=DIV wi=DIV wi=IPO wi=IPO wi=MA wi=DIV wi=IPO wi=MA wi=SEO

wj=IPO wj=MA wj=SEO wj=MA wj=SEO wj=SEO wj=REP wj=REP wj=REP wj=REP

π2 0.0020 0.0749 0.0540 0.4730 0.8375 0.2453 0.0503 0.2388 0.0747 -0.0102

(p-value) (0.8710) (0.0415)* (0.2545) (0.0069)* (0.0001)* (0.0002)* (0.1750) (0.1395) (0.1364) (0.8053)

η2 0.4687 0.0467 0.0246 -0.0001 0.0106 0.0128 0.1770 -0.1579 0.0324 0.0382

(p-value) (0.0509) (0.5397) (0.6872) (0.9990) (0.4555) (0.7787) (0.0001)* (0.3280) (0.5164) (0.3500)

π4 0.0068 0.0537 0.0313 0.2459 -0.4311 -0.0902 0.2561 0.0223 0.0708 0.0844

(p-value) (0.5730) (0.1845) (0.5114) (0.1589) (0.0457)* (0.1735) (0.0009)* (0.2124) (0.2177) (0.2227)

η4 -0.3232 0.1675 0.0401 0.0139 -0.0066 0.0613 0.4165 -0.0008 0.1159 0.0707

(p-value) (0.1742) (0.0261)* (0.5084) (0.4453) (0.6387) (0.1690) (0.0001)* (0.9650) (0.0560) (0.3121)

Wald Test (p-values):

Eqn. 1: (0.8042) (0.0043)* (0.0764) (0.0208)* (0.0002)* (0.0003)* (0.0001)* (0.3244) (0.2890) (0.5096)

Eqn. 2: (0.1423) (0.0040)* (0.3670) (0.7298) (0.5938) (0.1351) (0.0001)* (0.4317) (0.0020)* (0.1540)
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